Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here: nccn.org/clinical_trials/physician.html.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise specified. See NCCN Categories of Evidence and Consensus.

NCCN Guidelines for Patients® are available at www.nccn.org/patients.

Staging (ST-1)
Updates in Version 1.2017 of the NCCN Guidelines for Ovarian Cancer from Version 1.2016 include:

General
• Imaging recommendations have been clarified to include the target anatomy, and the recommended imaging modalities.

OV-1
• Workup, added: "Evaluate total serum protein and nutritional status."
• Column added for clinical stage, and primary treatment options significantly revised and reorganized by clinical stage for those with a suspicious mass and/or symptoms.
• Footnote added: "May be an option for select patients with stage IC based on histology."

OV-3
• Stage II-IV, clarified that IP and IV chemotherapy options are category 2A recommendations for LCOH.
• Stage I-IV, following primary/adjuvant therapy, a link has been added to the NCCN Guidelines for Survivorship.

OV-4
• Footnote "r" revised: "No objective definitive evidence of disease (ie, negative physical exam, negative CA-125, negative CT with <1 cm lymph nodes)."
• Footnote "s" added: "There is limited evidence that postremission pazopanib may be less effective in east Asian women with ovarian cancer. (Kim JW, Mahner S, Wu LY, et al. Pazopanib maintenance therapy in East Asian women with advanced epithelial ovarian cancer: results from AGO-OVAR16 and an East Asian study. Int J Gynecol Cancer 2015.)"

OV-5
• Monitoring and follow-up, bullet added: "Long-term wellness care (See NCCN Guidelines for Survivorship)."

OV-6
• After platinum-based recurrence therapy for platinum-sensitive disease:
 ▶ Added: "Repeat prior imaging: chest/abdominal/pelvic CT, MRI, PET/CT, or PET"
 ▶ Maintenance option added: "Consider niraparib maintenance therapy if partial or complete response." Related footnote "aa" added: "For those with platinum-sensitive disease who have completed two or more lines of platinum-based therapy."

Less Common Ovarian Histopathologies
LCOH-1

LCOH-2
• First adjuvant option revised: "Treat Chemotherapy as per epithelial ovarian cancer (preferred) (See Primary Chemotherapy/Primary Adjuvant Therapy on OV-3)."

LCOH-3
• Adjuvant therapy for stage II-IV revised: "Treat Chemotherapy as per epithelial ovarian cancer (See Primary Chemotherapy/Primary Adjuvant Therapy on OV-3)."

LCOH-4
• After workup, added "if not previously done" to consider surgical staging.
• For stages IA-IB and IC, the following option has been added: "Fertility-sparing surgery for select patients (if not previously done)."
• Footnote "f" revised: "Consider molecular testing for additional testing to aid in the identification of metastatic GI malignancies versus primary mucinous ovarian cancer."

LCOH-7
• Added "Chest/abdomen/pelvic CT with contrast" for residual disease.

LCOH-10
• Prior surgery and incompletely staged, imaging recommendations revised: "consider repeat imaging (CT, MRI, PET-CT) as indicated Chest/abdomen/pelvis CT with contrast (if not previously done)."
• For incompletely staged dysgerminoma or grade I immature teratoma, with negative tumor markers and negative imaging, the following option has been added: "Consider observation (category 2B) (See LCOH-12)"

LCOH-11
• Footnote "a" added: "See WHO histologic classification (OV-D)."
Updates in Version 1.2017 of the NCCN Guidelines for Ovarian Cancer from Version 1.2016 include:

LCOH-12
- Footnote "w" added: "Chest/abdominal/pelvic CT with contrast if recurrence suspected. Other imaging modalities can be considered (ie, chest x-ray, MRI, PET/CT, or PET)."

OV-A (3 of 4)
- Interval "cytoreduction" changed to "debulking."
- First bullet revised: "Interval cytoreductive debulking surgery, including completion TAH and BSO with staging, should be performed after..."

OV-A (4 of 4)
- Fertility-sparing surgery, sub-bullet revised: "Fertility-sparing surgery with USO (preserving the uterus and contralateral ovary) or BSO (preserving the uterus) (fertility-sparing surgery) can be considered for patients with apparent early-stage disease and/or low-risk tumors (early-stage invasive epithelial tumors, LMP lesions, malignant germ cell tumors, mucinous, or malignant sex cord-stromal tumors) who wish to preserve fertility..."
- Footnote "3" added: "Decisions on the use of ancillary procedures should be made in conjunction with a gynecologic oncology surgeon or a practitioner familiar with ovarian cancer patterns of recurrence."

OV-B (3 of 8)
- Page heading revised: "Primary Systemic Therapy Regimens, Less Common Ovarian Histopathologies Malignant Germ Cell/Sex Cord-Stromal Tumors"
- Bullet added under carcinosarcoma, clear cell, mucinous, and borderline and low-grade (grade 1 serous/endometrioid epithelial carcinoma: "IP/IV and IV regimens (See options for stage II-IV disease on OV-B, 3 of 8)"

OV-B (5 of 8)
- Page heading revised: "Acceptable Recurrence Therapies for Epithelial (including LCOH)/Fallopian Tube/Primary Peritoneal Cancer"
- Cytotoxic therapy for platinum-sensitive disease:
 - Carboplatin/gemcitabine/bevacizumab has been changed from a category 2B recommendation to a category 2A.
 - Option added: Carboplatin/paclitaxel, albumin bound (for patients with confirmed taxane hypersensitivity)
- The following options have been added for mucinous tumors only:
 - 5-FU/leucovorin/oxaliplatin ± bevacizumab (category 2B for bevacizumab)
 - Capecitabine + oxaliplatin
- Rucaparib added as a targeted recurrence therapy option (preferred option for platinum-resistant disease), with footnote "n": "For patients with deleterious germline and/or somatic BRCA mutated (as detected by an FDA-approved test or other validated test performed in a CLIA-approved facility) advanced ovarian cancer who have been treated with two or more lines of chemotherapy." Reference: Swisher EM, Lin KK, Oza AM, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 2017;18:75-87.
- A note has been added below the table: "For LCOH, all regimens are category 2A unless indicated." (Also on OV-B, 6 of 8)
- Footnote "g" added: "Chemotherapy has not been shown to be beneficial in ovarian borderline epithelial tumors (LMP)."
- List of other potentially active agents has been moved onto OV-B (6 of 8).
- Carboplatin/paclitaxel/bevacizumab has been added to the list of other potentially active agents for platinum-sensitive disease.

OV-B (4 of 8)
- Page heading revised: "Primary Chemotherapy/Primary Adjuvant Systemic Therapy Regimens, Less Common Ovarian Histopathologies Malignant Germ Cell/Sex Cord-Stromal Tumors"
- Option added for stage II-IV: "Carboplatin AUC 5 + pegylated liposomal doxorubicin 30 mg/m² every 4 weeks for 6 cycles."
- Neoadjuvant therapy section added.
- Additional options for LCOH moved onto OV-B (4 of 8).
NCCN Guidelines Version 1.2017
Epithelial Ovarian Cancer/Fallopian Tube Cancer/
Primary Peritoneal Cancer

CLINICAL PRESENTATION

<table>
<thead>
<tr>
<th>Suspicious(^a/) palpal pelvic mass on abdominal/pelvic exam and/or ascites, abdominal distention and/or Symptoms without source of malignancy (ie, bloating, pelvic/abdominal pain, difficulty eating or feeling full quickly, urinary symptoms [urgency or frequency])(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Obtain family history(^c,d)</td>
</tr>
<tr>
<td>• Abdominal/pelvic exam</td>
</tr>
<tr>
<td>• Chest x-ray or chest CT as clinically indicated(^e)</td>
</tr>
<tr>
<td>• Complete blood count, chemistry profile with liver function test (LFT)</td>
</tr>
<tr>
<td>• GI evaluation for mucinous histology</td>
</tr>
<tr>
<td>• Ultrasound and/or abdominal/pelvic CT/MRI as clinically indicated(^e,f)</td>
</tr>
<tr>
<td>• CA-125 or other tumor markers as clinically indicated(^g)</td>
</tr>
<tr>
<td>• Evaluate total serum protein and nutritional status</td>
</tr>
</tbody>
</table>

WORKUP

| IA (fertility desired) |
| IB (fertility desired) |
| IA-IV, surgical candidate (fertility not desired) |
| Bulky stage III-IV, or poor surgical candidate |

PRIMARY TREATMENT\(^h,i,j\)

| Unilateral salpingo-oophorectomy (USO) + comprehensive surgical staging\(^i,k\) |
| Bilateral salpingo-oophorectomy (BSO) + comprehensive surgical staging\(^i,k\) |
| Laparotomy/total abdominal hysterectomy (TAH)/BSO + comprehensive staging\(^i\) and debulking as needed |
| Evaluation by gynecologic oncologist\(^h\) and Histologic confirmation (core biopsy preferred) |

PRIMARY TREATMENT for bulky stage III-IV, or poor surgical candidate

| Consider neoadjuvant chemotherapy\(^h,i\) (category 1) ± interval debulking surgery (IDS) with TAH/BSO\(^h,j\) |

CLINICAL STAGE

Diagnosis by previous surgery or tissue biopsy (cytopathology)

See Workup, Findings and Primary Treatment (OV-2)

PRIMARY TREATMENT for bulky stage III-IV, or poor surgical candidate

See Pathologic Staging (OV-3)

\(^c\)See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian and NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal.

\(^d\)Primary treatment should not be delayed for a genetic counseling referral.

\(^e\)Imaging performed with contrast unless contraindicated.

\(^f\)PET/CT or MRI may be indicated for indeterminate lesions if results will alter management.

\(^g\)Other tumor markers may include inhibin, beta-human chorionic gonadotropin (β-hCG), alpha-fetoprotein, lactate dehydrogenase (LDH), and carcinoembryonic antigen (CEA). See Discussion for usefulness of diagnostic tests.

\(^h\)Standard recommendation includes a patient evaluation by a gynecologic oncologist prior to initiating chemotherapy. Published data demonstrate that primary assessment and debulking by a gynecologic oncologist results in a survival advantage. Patients being evaluated for neoadjuvant chemotherapy should be seen by a fellowship-trained gynecologic oncologist prior to being considered a poor surgical candidate. A referral to a gynecologic oncologist is also recommended for management of occult serous tubal intraepithelial carcinomas.

\(^i\)All women undergoing surgery for ovarian cancer should be counseled about the clinical benefit associated with combined IV and IP chemotherapy administration prior to surgery. NCI Clinical Announcement.

\(^j\)See Principles of Surgery (OV-A).

\(^k\)May be an option for select patients with stage IC based on histology. See Principles of Chemotherapy (OV-B) and Management of Drug Reactions (OV-C).
Diagnosis by Previous Surgery

Workup

<table>
<thead>
<tr>
<th>Findings</th>
<th>Primary Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected stage IA or IB/grade 1m</td>
<td>Completion surgery/surgical staging</td>
</tr>
<tr>
<td>Suspected stage IA or IB/grade 2m</td>
<td>Completion surgery/surgical staging</td>
</tr>
<tr>
<td>Suspected stage IA or IB, grade 3 or clear cell or stage ICm</td>
<td>Completion surgery/surgical staging</td>
</tr>
<tr>
<td>Stage II, III, IV</td>
<td>Tumor reductive surgery</td>
</tr>
<tr>
<td>Suspect potentially resectable residual disease</td>
<td>Chemotherapy (6 cycles) Evaluate for IDS prior to fourth cycle of chemotherapy</td>
</tr>
<tr>
<td>Suspect unresectable residual disease</td>
<td></td>
</tr>
</tbody>
</table>

Adequate previous surgery and staging

- Obtain family history
- Refer for genetic risk evaluation
- Chest x-ray or chest CT as clinically indicated
- CBC, chemistry profile with LFTs
- Institutional pathology review
- Ultrasound and/or abdominal/pelvic CT/MRI as clinically indicated
- CA-125 or other tumor markers as clinically indicated
- Consider tissue diagnosis of metastatic sites

Notes
- Other tumor markers may include inhibin, beta-human chorionic gonadotropin (β-hCG), alpha-fetoprotein, lactate dehydrogenase (LDH), and carcinoembryonic antigen (CEA). See Discussion for usefulness of diagnostic tests.
- Imaging performed with contrast unless contraindicated.
- Standard recommendation includes a patient evaluation by a gynecologic oncologist prior to initiating chemotherapy. Published data demonstrate that primary assessment and debulking by a gynecologic oncologist results in a survival advantage. Patients being evaluated for neoadjuvant chemotherapy should be seen by a fellowship-trained gynecologic oncologist prior to being considered a poor surgical candidate. A referral to a gynecologic oncologist is also recommended for management of occult serous tubal intraepithelial carcinomas.

Principles of Surgery (OV-A)

- See Principles of Surgery (OV-A).

Principles of Chemotherapy (OV-B)

- See Principles of Chemotherapy (OV-B) and Management of Drug Reactions (OV-C).

Pathologic Staging (OV-3)

- Pathologists recommend that serous ovarian cancer is either low-grade (most grade 1 serous tumors) or high-grade (most grade 2 or 3 serous tumors). See FIGO Guidelines (ST-5).

Completion Surgery after 3 Cycles

- Completion surgery after 3 cycles is preferred; however, surgery may be performed after 4–6 cycles based on the clinical judgment of the gynecologic oncologist.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 1.2017, 04/12/17 © National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
PATHOLOGIC STAGING

Less common ovarian histology (LCOH) (ie, carcinosarcoma, clear cell, mucinous, low-grade [grade 1] serous, borderline epithelial, malignant sex cord-stromal/germ cell tumors)

Stage IA or IB

Grade 1 (low-grade) serous/endometrioid

Grade 2 (serous/endometrioid)

Grade 3 (high-grade)

Stage IC

(Grade 1, 2, or 3)

Stage II

Stage III

Stage IV

PRIMARY CHEMOTHERAPY/PRIMARY ADJUVANT THERAPY

Consider symptom management and best supportive care. Refer for palliative care assessment, if appropriate.

- See NCCN Guidelines for Palliative Care
- See NCCN Guidelines for Survivorship

Consider symptom management and best supportive care. Refer for palliative care assessment, if appropriate.

- See NCCN Guidelines for Palliative Care
- See NCCN Guidelines for Survivorship

See LCOH-1

See LCOH-5

Observe or Intravenous (IV) taxane/carboplatin\(^1\) x 3–6 cycles

IV taxane/carboplatin\(^1\) x 3–6 cycles

See Secondary Adjuvant Therapy (OV-4)

See Monitoring/ Follow-Up (OV-5)

Data suggest select patients with serous histology may benefit from 6 cycles. See Discussion.

Grade 1 m (low-grade) serous/endometrioid

Grade 2 m (serous/endometrioid)

Grade 3 m (high-grade)

Chemotherapy [See Primary Regimens (OV-B, 3 of 8)]

- Intraperitoneal (IP) chemotherapy\(^{i,l}\) in <1 cm optimally debulked stage II and stage III patients (category 1 for stage III, category 2A for stage II and LCOH)
- IV taxane/carboplatin\(^1\) for a total of 6 cycles (category 1, category 2A for LCOH)
- Completion surgery as indicated by tumor response and potential resectability in selected patients\(^{j}\)

\(^{i}\)All women undergoing surgery for ovarian cancer should be counseled about the clinical benefit associated with combined IV and IP chemotherapy administration prior to surgery. NCI Clinical Announcement.

\(^{j}\)See Principles of Surgery (OV-A).

\(^{l}\)See Principles of Chemotherapy (OV-B) and Management of Drug Reactions (OV-C).

\(^{m}\)Pathologists recommend that serous ovarian cancer is either low-grade (most grade 1 serous tumors) or high-grade (most grade 2 or 3 serous tumors). See FIGO Guidelines (ST-5).

\(^{o}\)See WHO Histologic Classification (OV-D).

\(^{p}\)Patients receiving primary chemotherapy will be monitored as follows:

1. Every 2–3 cycles: Physical exam and consider pelvic exam
2. Interim CBC with platelets as indicated
3. Chemistry profiles if indicated
4. CA-125 levels or other tumor markers as clinically indicated prior to each cycle of chemotherapy
5. Chest/abdominal/pelvic CT or MRI with contrast, PET/CT (skull base to mid-thigh), or PET as indicated

\(^{q}\)Data suggest select patients with serous histology may benefit from 6 cycles. See Discussion.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
STAGE II, III, IV POST-PRIMARY TREATMENT

SECONDARY ADJUVANT THERAPY

Clinical trial or
Observe or
Postremission pazopanib\(^\text{a}\) (category 2B)
or
Postremission paclitaxel\(^\text{b}\) (category 2B)

Imaging\(^\text{a}\) as clinically indicated:
Chest/abdominal/pelvic CT, MRI, PET/CT, or PET (skull base to mid-thigh)

Complete clinical remission\(^\text{f}\)

Partial remission or progression

See Persistent Disease or Recurrence Therapy (OV-6)

See Monitoring/Follow-Up (OV-5)

\(^{\text{a}}\)Imaging performed with contrast unless contraindicated.

\(^{\text{b}}\)No definitive evidence of disease.

\(^{\text{c}}\)There is limited evidence that postremission pazopanib may be less effective in east Asian women with ovarian cancer. (Kim JW, Mahner S, Wu LY, et al. Pazopanib maintenance therapy in East Asian women with advanced epithelial ovarian cancer: results from AGO-OVAR16 and an East Asian study. Int J Gynecol Cancer 2015.)

\(^{\text{f}}\)See Discussion for dosing.
MONITORING/FOLLOW-UP

- Visits every 2–4 mo for 2 y, then 3–6 mo for 3 y, then annually after 5 y
- Physical exam including pelvic exam
- CA-125 or other tumor markers if initially elevated
- Refer for genetic risk evaluation, if not previously done
- CBC and chemistry profile as indicated
- Chest/abdominal/pelvic CT, MRI, PET/CT, or PET (skull base to mid-thigh) as clinically indicated
- Chest x-ray as indicated
- Long-term wellness care (See NCCN Guidelines for Survivorship)

RECURRENT DISEASE

Rising CA-125, no previous chemotherapy or Clinical relapse, no previous chemotherapy

- Imaging studies as clinically indicated: Chest/abdominal/pelvic CT, MRI, PET/CT, or PET

See Primary Treatment (OV-1)

Clinical relapse, previous chemotherapy

- Imaging studies as clinically indicated: Chest/abdominal/pelvic CT, MRI, PET/CT, or PET

See Therapy for Persistent Disease or Recurrence (OV-6)

Serially rising CA-125, previous chemotherapy

- Imaging studies as clinically indicated: Chest/abdominal/pelvic CT, MRI, PET/CT, or PET

Delay treatment until clinical relapse or Immediate treatment for recurrent disease (category 2B) or Clinical trial

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 1.2017
Epithelial Ovarian Cancer/Fallopian Tube Cancer/
Primary Peritoneal Cancer

DISEASE STATUS

Progression, stable, or persistent disease on primary chemotherapy

Complete remission and relapse <6 mo after completing chemotherapy or Stage II, III, and IV with partial response

Complete remission and relapse ≥6 mo after completing prior chemotherapy

Clinical trialz
and/or
Best supportive care, (See NCCN Guidelines for Palliative Care)

Consider secondary cytoreductive surgeryj

Clinical trialz
and/or
Combination platinum-based chemotherapy x 6 cyclesw,x preferred for first recurrence (category 1) or Recurrence therapyw,x,y and/or
Best supportive care (See NCCN Guidelines for Palliative Care)

Clinical trialz
or
Delay treatment until clinical relapse or Immediate platinum-based recurrence therapyw (category 2B) and/or
Best supportive care (See NCCN Guidelines for Palliative Care)

Repeat prior imaging:e chest/ abdominal/ pelvic CT, MRI, PET/CT, or PET

Consider niraparibaa maintenance therapy if partial or complete response

MAINTENANCE THERAPY

Clinical trialz
and/or
Combination platinum-based chemotherapy x 6 cyclesw,x preferred

Recurrence therapyw,x,y

See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian and NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal.

Radiographic and/or clinical relapse

Consider secondary cytoreductive surgeryj

Biochemical relapse (rising CA-125 and no radiographic evidence of disease)

Clinical trialz
or
Delay treatment until clinical relapse or Immediate platinum-based recurrence therapyw (category 2B) and/or
Best supportive care (See NCCN Guidelines for Palliative Care)

Repeat prior imaging:e chest/ abdominal/ pelvic CT, MRI, PET/CT, or PET

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Less Common Ovarian Histopathologies

DIAGNOSIS

- Carcinosarcoma (malignant mixed Müllerian tumor [MMMT])
- Clear cell carcinoma of the ovary
- Mucinous carcinoma of the ovary
- Low-grade (grade 1) serous/endometrioid epithelial carcinoma
- Borderline epithelial tumors (low malignant potential [LMP])
- Malignant sex cord-stromal tumors
- Malignant germ cell tumors

Surgery and **histologic diagnosis**

- See LCOH-2
- See LCOH-3
- See LCOH-4
- See LCOH-5
- See LCOH-6
- See LCOH-9
- See LCOH-10

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Carcinosarcoma (MMMTs) of the Ovary

Pathologic Diagnosis
- Carcinosarcoma (MMMTs) of the ovary
- Complete surgical staging
- Stage I-IV

Adjuvant Treatment
- Chemotherapy as per epithelial ovarian cancer (preferred) *(See Primary Chemotherapy/Primary Adjuvant Therapy on OV-3)*
 - or Cisplatin/ifosfamide
 - or Carboplatin/ifosfamide
 - or Paclitaxel/ifosfamide (category 2B)

Monitoring/Follow-Up
- See Monitoring/ Follow-Up (OV-5)

*a See WHO Histologic Classification (OV-D).

*c See Principles of Surgery (OV-A).

*e See Principles of Chemotherapy (OV-B) and Management of Drug Reactions (OV-C).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PATHOLOGIC DIAGNOSIS

- Clear cell carcinoma of the ovary
 - Stage IA-C: IV taxane/carboplatin\(^e\) x 3–6 cycles → See Monitoring/Follow-Up (OV-5)
 - Stage II-IV: Chemotherapy as per epithelial ovarian cancer (See Primary Chemotherapy/Primary Adjuvant Therapy on OV-3)
 - Borderline: See LCOH-6

\(^a\)See WHO Histologic Classification (OV-D).
\(^e\)See Principles of Chemotherapy (OV-B) and Management of Drug Reactions (OV-C).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Mucinous Carcinoma of the Ovary

Stage IA-IB
- **ADJUVANT TREATMENT**: Fertility-sparing surgery for select patients (if not previously done)

Stage IC
- **ADJUVANT TREATMENT**: Observe or Fertility-sparing surgery for select patients (if not previously done)

Stage II-IV
- **ADJUVANT TREATMENT**: Observe or IV taxane/carboplatin x 3–6 cycles or 5-FU + leucovorin + oxaliplatin or Capecitabine + oxaliplatin or Fertility-sparing surgery for select patients (if not previously done)

Borderline
- **ADJUVANT TREATMENT**: Observe or Fertility-sparing surgery

PATHOLOGIC DIAGNOSIS
- Mucinous carcinoma of the ovary

ADDITIONAL WORKUP
- If not previously done:
 - GI evaluation
 - Carcinoembryonic antigen (CEA)

ADJUVANT TREATMENT
- Observe or Fertility-sparing surgery for select patients (if not previously done)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PATHOLOGIC DIAGNOSIS

Low-Grade (Grade 1) Serous/Endometrioid Epithelial Carcinoma

ADJUVANT TREATMENT

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA-IB</td>
<td>Observe</td>
<td>(category 2B)</td>
</tr>
<tr>
<td>IC-II</td>
<td>Observe (category 2B) or IV taxane/carboplatin(^e) x 3–6 cycles or Hormone therapy (category 2B) (ie, aromatase inhibitors [anastrozole, letrozole], leuprolide acetate, tamoxifen)</td>
<td></td>
</tr>
<tr>
<td>III-IV</td>
<td>Chemotherapy (See Primary Regimens, OV-B, 3 of 8)(^e) or Hormone therapy (category 2B) (ie, aromatase inhibitors [anastrozole, letrozole], leuprolide acetate, tamoxifen)</td>
<td></td>
</tr>
<tr>
<td>Borderline</td>
<td>See LCOH-6</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)See WHO Histologic Classification (OV-D).
\(^b\)See Principles of Chemotherapy (OV-B) and Management of Drug Reactions (OV-C).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Index
Ovarian Cancer TOC
Discussion

LCOH-5
NCCN Guidelines Version 1.2017
Borderline Epithelial Tumors (Low Malignant Potential)

PATHOLOGIC DIAGNOSIS

Borderline epithelial tumors (LMP)

- Previous surgical staging was comprehensive
 - No invasive implants → Observe
 - Invasive implants → Invasive implants

- Incomplete surgical staging
 - See LCOH-7

ADJUVANT TREATMENT

- Observe
- See Monitoring/ Follow-up (LCOH-8)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See WHO Histologic Classification (OV-D).
See Principles of Surgery (OV-A).
Standard recommendation includes a patient evaluation by a gynecologic oncologist.
Chemotherapy (IV or IP) has not been shown to be beneficial in ovarian borderline epithelial tumors (LMP).
Borderline epithelial tumor (LMP), incomplete surgical staging\(^a\)

\[\text{Borderline epithelial tumor (LMP), incomplete surgical staging} \rightarrow \text{Chest/abdomen/pelvic CT with contrast}\]

PATHOLOGIC DIAGNOSIS\(^a\)

- **Residual disease remaining after first procedure**
 - **Fertility desired**
 - **Invasive implants at previous surgery**
 - **No invasive implants or Unknown**
 - **Observe** (category 2B)
 - **Fertility-sparing surgery\(^c\)** and resection of residual disease\(^i\)
 - **Invasive implants at previous surgery**
 - **Observe** (category 2B)
 - **Fertility-sparing surgery\(^c\)** and resection of residual disease\(^i\)
 - **No invasive implants or Unknown**
 - **Observe** (category 3)
 - **Consider treatment as grade 1 (low-grade) serous epithelial carcinoma\(^h\)** (See LCOH-5)

- **No residual disease remaining after first procedure**
 - **If no desire for fertility**
 - **Invasive implants at previous surgery**
 - **Observe** (category 2B)
 - **Completion surgery\(^c\),\(^i\)** and resection of residual disease
 - **No invasive implants or Unknown**
 - **Observe** (category 2B)
 - **Completion surgery\(^c\),\(^i\)** and resection of residual disease
 - **Observe** (category 3)
 - **Consider treatment as grade 1 (low-grade) serous epithelial carcinoma\(^h\)** (See LCOH-5)

ADJUVANT TREATMENT\(^g\)

- **Fertility-sparing surgery\(^c\)** and resection of residual disease\(^i\)
- **Observe** (category 2B)
- **Completion surgery\(^c\),\(^i\)** and resection of residual disease

\(^a\) See WHO Histologic Classification (OV-D).
\(^c\) See Principles of Surgery (OV-A).
\(^g\) Standard recommendation includes a patient evaluation by a gynecologic oncologist.
\(^h\) Chemotherapy (IV or IP) has not been shown to be beneficial in ovarian borderline epithelial tumors (LMP).
\(^i\) For pathologically proven LMP, lymph node evaluation may be considered on a case-by-case basis.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
MONITORING/FOLLOW-UP

- Visits every 3–6 mo for up to 5 y, then annually
- Physical exam including pelvic exam
- CA-125\(^1\) or other tumor markers every visit if initially elevated
- After completion of childbearing in patients who underwent USO, consider completion surgery (category 2B)
- CBC, chemistry profile as indicated
- Imaging\(^k\) as clinically indicated: Chest/abdominal/pelvic CT, MRI, PET/CT, or PET (skull base to mid-thigh)
- Ultrasound as indicated for patients with fertility-sparing surgery

RECURRENT DISEASE

<table>
<thead>
<tr>
<th>Clinical relapse</th>
<th>Surgical evaluation + debulking if appropriate</th>
<th>Noninvasive disease</th>
<th>Observe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive implants of LMP or Low-grade invasive carcinoma</td>
<td>Invasive carcinoma (high grade)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See grade 1 (low-grade) serous epithelial carcinoma(^h) (LCOH-5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Treatment as epithelial ovarian cancer(^h) (See OV-3)</td>
<td></td>
</tr>
</tbody>
</table>

RECURRENCE THERAPY

1. Chemotherapy (IV or IP) has not been shown to be beneficial in ovarian borderline epithelial tumors (LMP).
2. There are data regarding the utility of CA-125 for monitoring of ovarian cancer after completion of primary therapy. See The Society of Gynecologic Oncology (SGO) position statement and Discussion.
3. Imaging performed with contrast unless contraindicated.

\(^h\)Chemotherapy (IV or IP) has not been shown to be beneficial in ovarian borderline epithelial tumors (LMP).

\(^1\)There are data regarding the utility of CA-125 for monitoring of ovarian cancer after completion of primary therapy. See The Society of Gynecologic Oncology (SGO) position statement and Discussion.

\(^k\)Imaging performed with contrast unless contraindicated.
Malignant sex cord-stromal tumors are defined by the WHO Histologic Classification (OV-D). Complete staging may be omitted. Inhibin levels can be followed if initially elevated for granulosa cell tumors (category 2B).

Stage IA/IC:
- **Fertility desired**
 - Fertility-sparing surgery with complete staging
- **All others**
 - Complete staging

Stage I, low risk (e.g., ruptured stage IC or poorly differentiated stage I) or intermediate risk (e.g., heterologous elements):
- **Observe** (category 2B)
- **Consider platinum-based chemotherapy** (category 2B)

Stage I, high risk:
- **Observe** (category 2B)
- **Consider platinum-based chemotherapy** (category 2B)

Stage II-IV:
- **Platinum-based chemotherapy** (category 2B) or RT for limited disease (category 2B)

ADJUVANT TREATMENT
- **Observe** (category 2B)

RECURRENT THERAPY
- **See Surveillance (LCOH-12)**

If clinical relapse:
- Clinical trial
- Consider secondary cytoreductive surgery or Recurrence therapy

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Malignant Germ Cell Tumors

CLINICAL PRESENTATION/DIAGNOSIS

- **Initial surgery**
 - Fertility desired
 - Fertility not desired

- **Prior surgery**
 - Incompletely staged: chest/abdomen/pelvis CT with contrast (if not previously done)
 - Dysgerminoma or Grade 1 immature teratoma
 - Embryonal, endodermal sinus tumor (yolk sac tumor), grade 2–3 immature teratoma, or mixed histology

TREATMENT

- **Completely staged**
 - Positive imaging and positive tumor markers
 - Fertility desired, then fertility-sparing surgery and comprehensive staging; fertility not desired, then completion staging surgery (See OV-A)
 - Consider observation (category 2B) (See LCOH-12)

- **Positive imaging and positive tumor markers**
 - Fertility desired, then fertility-sparing surgery and comprehensive staging; fertility not desired, then completion staging surgery (See OV-A)
 - Consider observation (category 2B) (See LCOH-12)

- **Negative imaging and positive tumor markers**
 - Fertility desired, then fertility-sparing surgery and comprehensive staging; fertility not desired, then completion staging surgery with possible tumor reductive surgery (See OV-A) or Chemotherapy (See LCOH-11)
 - Consider observation (category 2B) (See LCOH-12)

- **Negative imaging and negative tumor markers**

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 1.2017
Malignant Germ Cell Tumors

PATHOLOGIC DIAGNOSIS

<table>
<thead>
<tr>
<th>Stage I Dysgerminoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
</tr>
<tr>
<td>Stage I, grade 1 Immature teratoma</td>
</tr>
<tr>
<td>Any stage Embryonal tumor</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>Any stage Endodermal sinus tumor (yolk sac tumor)</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>Stage II-IV Dysgerminoma</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>Stage I, grade 2 or 3 or Stage II-IV Immature teratoma</td>
</tr>
</tbody>
</table>

ADJUVANT TREATMENT

- **Observe**
 - See Surveillance (LCOH-12)

MONITORING/ FOLLOW-UP

- **Complete clinical response**
 - Observe (See LCOH-12)

RECURRENT/ PERSISTENT DISEASE

- **Abnormal markers, definitive recurrent disease**
 - Consider additional chemotherapy (category 2B)
 - or
 - High-dose chemotherapy (category 2B)

- **Persistently elevated markers with definitive residual disease**
 - Consider surgical resection or Observe (See Surveillance LCOH-12)
 - Complete clinical response

- **Residual tumor on radiographic imaging; markers normal**
 - Consider surgical resection or Observe (See Surveillance LCOH-12)
 - Incomplete clinical response

- **Residual malignancy**
 - Consider additional platinum-based chemotherapy x 2 cycles
 - TIP (paclitaxel/ifosfamide/cisplatin)
 - or
 - High-dose chemotherapy (strongly recommend referral to tertiary care center for potentially curative regimen)

- **Necrotic tissue**
 - Benign teratoma
 - Chest/abdominal/pelvic CT or MRI as clinically indicated
 - See Surveillance (LCOH-12)

Note:
- All recommendations are category 2A unless otherwise indicated.
- Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

*a See WHO Histologic Classification (OV-D).

*b Imaging performed with contrast unless contraindicated.

*c See Acceptable Recurrence Therapies for Malignant Germ Cell/Sex Cord-Stromal Tumors (OV-B, 7 of 8).

*d Pediatric/adolescent patients with the following clinical presentations may consider observation or chemotherapy as treatment options: stage IA, IB dysgerminoma; stage IA, grade 1 immature teratoma; stage IA embryonal tumors; or stage IA yolk sac tumors.

*e See Primary Chemotherapy Regimens for Malignant Germ Cell Tumors (OV-B, 4 of 8).

+f See LCOH-1 for markers.

+g High-dose chemotherapy regimens vary among institutions. Some patients are potentially curable with stem cell transplantation. Patients with potentially curable recurrent germ cell disease should be referred to a tertiary care institution for stem-cell transplant consultation and potentially curative therapy.
SURVEILLANCE FOR MALIGNANT GERM CELL AND SEX CORD-STROMAL TUMORS

<table>
<thead>
<tr>
<th></th>
<th>Years</th>
<th><1</th>
<th>1–2</th>
<th>2–3</th>
<th>3–5</th>
<th>>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germ cell tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex cord-stromal tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum tumor markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germ cell tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex cord-stromal tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiographic imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germ cell tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex cord-stromal tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence suspected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT scan and tumor markers**<sup>x</sup><sup>,w</sup></td>
<td></td>
<td>CT scan and tumor markers**<sup>x</sup><sup>,w</sup></td>
</tr>
</tbody>
</table>

^xChest x-ray, chest/abdominal/pelvic CT, MRI, PET/CT, or PET; with contrast unless contraindicated.

^wChest/abdominal/pelvic CT with contrast if recurrence suspected. Other imaging modalities can be considered (ie, chest x-ray, MRI, PET/CT, or PET).

^ySee [OV-1](#) for markers.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SURGERY (1 of 4)

General considerations

- An open laparotomy including a vertical midline abdominal incision should be used in patients with a suspected malignant ovarian/Fallopian tube/primary peritoneal neoplasm in whom a surgical staging procedure, a primary debulking procedure, an interval debulking procedure, or secondary cytoreduction is planned.
- Intraoperative pathologic evaluation with frozen sections may assist in management.
- For select patients, a minimally invasive surgical approach may be employed by an experienced surgeon to achieve the surgical staging and debulking principles subsequently described.
- Patients who are unable to be optimally debulked using minimally invasive techniques should be converted to an open procedure.
- Minimally invasive surgical approaches may be useful when evaluating whether maximum cytoreduction can be achieved in patients with newly diagnosed or recurrent ovarian cancer. If clinical judgment indicates that maximum cytoreduction cannot be achieved, neoadjuvant chemotherapy should be considered.
- It is recommended that a gynecologic oncologist perform the appropriate surgery.

Operative reports

- Surgeons should describe the following in the operative report:
 - Extent of initial disease before debulking pelvis, midabdomen, or upper abdomen (cutoffs: pelvic brim to lower ribs).
 - Amount of residual disease in the same areas after debulking.
 - Complete or incomplete resection; if incomplete, indicate the size of the major lesion and total number of lesions. Indicate if miliary or small lesions.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SURGERY (2 of 4)

Newly diagnosed invasive epithelial ovarian cancer apparently confined to an ovary or to the pelvis

In general, every effort should be made during a primary cytoreduction procedure to achieve maximum cytoreduction of all pelvic disease and to evaluate for occult disease in the upper abdomen or retroperitoneum.

- On entering the abdomen, aspiration of ascites or peritoneal lavage should be performed for peritoneal cytologic examinations.
- All peritoneal surfaces should be visualized, and any peritoneal surface or adhesion suspicious for harboring metastasis should be selectively excised or biopsied. In the absence of any suspicious areas, random peritoneal biopsies should be taken from the pelvis, paracolic gutters, and undersurfaces of the diaphragm (diaphragm scraping for Papanicolaou stain is an acceptable alternative).
- BSO and hysterectomy should be performed with every effort to keep an encapsulated mass intact during removal.
- For selected patients desiring to preserve fertility, USO may be considered.
- Omentectomy should be performed.
- Para-aortic lymph node dissection should be performed by stripping the nodal tissue from the vena cava and the aorta bilaterally to at least the level of the inferior mesenteric artery and preferably to the level of the renal vessels.
- The preferred method of dissecting pelvic lymph nodes is bilateral removal of lymph nodes overlying and anterolateral to the common iliac vessel, overlying and medial to the external iliac vessel, overlying and medial to the hypogastric vessels, and from the obturator fossa at a minimum anterior to the obturator nerve.

Newly diagnosed invasive epithelial ovarian cancer involving the pelvis and upper abdomen

In general, every effort should be made during a primary cytoreduction procedure to achieve maximum cytoreduction of all abdominal, pelvic, and retroperitoneal disease. Residual disease <1 cm defines optimal cytoreduction; however, maximal effort should be made to remove all gross disease since this offers superior survival outcomes.

- Aspiration of ascites (if present) should be performed for peritoneal cytologic examinations. All involved omentum should be removed.
- Suspicious and/or enlarged nodes should be resected, if possible.
- Those patients with tumor nodules outside the pelvis ≤2 cm (presumed stage IIIB) should have bilateral pelvic and para-aortic lymph node dissection as previously described.
- Procedures that may be considered for optimal surgical cytoreduction (in all stages) include bowel resection and/or appendectomy, stripping of the diaphragm or other peritoneal surfaces, splenectomy, partial cystectomy and/or ureteroneocystostomy, partial hepatectomy, partial gastrectomy, cholecystectomy, and/or distal pancreatectomy.
- Select patients with low-volume residual disease after surgical cytoreduction for invasive epithelial ovarian or peritoneal cancer are potential candidates for IP therapy. In these patients, consideration should be given to placement of IP catheter with initial surgery.

Continued on OV-A (3 of 4)
Interval debulking surgery after neoadjuvant chemotherapy of invasive epithelial ovarian cancer

As with a primary debulking procedure, every effort should be made to achieve maximum cytoreduction during an interval debulking procedure. Maximal effort should be made to remove all gross disease in the abdomen, pelvis, and retroperitoneum.

- Interval debulking surgery, including completion TAH and BSO with staging, should be performed after ≤4 cycles of neoadjuvant chemotherapy for women with a response to chemotherapy or stable disease. Alternate timing of surgery has not been prospectively evaluated but may be considered based on individual patient-centered factors.
- All peritoneal surfaces should be visualized, and any peritoneal surface or adhesion suspicious for harboring metastasis should be selectively excised or biopsied.
- An omentectomy should be performed.
- Suspicious and/or enlarged nodes should be resected, if possible. Removal of lymph nodes noted to have potential metastasis at the time of initial diagnosis should be considered, even if not currently suspicious or enlarged.
- Procedures that may be considered for optimal surgical debulking include bowel resection and/or appendectomy, stripping of the diaphragm or other peritoneal surfaces, splenectomy, partial cystectomy and/or ureteroneocystostomy, partial hepatectomy, partial gastrectomy, cholecystectomy, and/or distal pancreatectomy.

Risk-Reducing Salpingo-Oophorectomy (RRSO) Protocol

- Perform operative laparoscopy.
- Survey upper abdomen, bowel surfaces, omentum, appendix (if present), and pelvic organs.
- Biopsy any abnormal peritoneal findings.
- Obtain pelvic washing for cytology (50 cc normal saline instilled and aspirated immediately).
- Perform total BSO, removing 2 cm of proximal ovarian vasculature/IP ligament, all tube up to the cornua, and all peritoneum surrounding the ovaries and tubes, especially peritoneum underlying areas of adhesion between tube and/or ovary and the pelvic sidewall.4
- Engage in minimal instrument handling of the tubes and ovaries to avoid traumatic exfoliation of cells.4
- Both ovaries and tubes should be placed in an endobag for retrieval from the pelvis.
- Both ovaries and tubes should be processed according to SEE-FIM protocol.5
- If occult malignancy or STIC is identified, provide referral to gynecologic oncologist.
- The prevention benefits of salpingectomy alone are not yet proven. If considered, the Fallopian tube from the fimbria to its insertion into the uterus should be removed. In addition, the Fallopian tube should be processed and assessed as described above. The concern for risk-reducing salpingectomy alone is that women are still at risk for developing ovarian cancer. In addition, in premenopausal women, oophorectomy reduces the risk of developing breast cancer by 50%. See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian.

Special Circumstances

- Fertility-sparing surgery:
 - Fertility-sparing surgery with USO (preserving the uterus and contralateral ovary) or BSO (preserving the uterus) can be considered for patients with apparent early-stage disease and/or low-risk tumors (early-stage invasive epithelial tumors, LMP lesions, malignant germ cell tumors, mucinous, or malignant sex cord-stromal tumors) who wish to preserve fertility. Comprehensive surgical staging should still be performed to rule out occult higher stage disease but may be omitted in pediatric/adolescent patients with clinically apparent early-stage malignant germ cell tumors based on the pediatric surgical literature.2
 - Mucinous tumors: Primary invasive mucinous tumors of the ovary are uncommon. Thus, the upper and lower GI tract should be carefully evaluated to rule out an occult GI primary with ovarian metastases, and an appendectomy should be performed at primary surgery in patients with a suspected or confirmed mucinous ovarian neoplasm.
 - LMP tumors: Although data show upstaging with lymphadenectomy, other data show that lymphadenectomy does not affect overall survival. However, omentectomy and multiple biopsies of peritoneum (the most common sites of peritoneal implants) may upstage patients in approximately 30% of cases and may affect prognosis.
 - Secondary cytoreduction: A secondary cytoreduction procedure can be considered in patients with recurrent ovarian cancer who recur more than 6–12 months since completion of initial chemotherapy, have an isolated focus (or limited foci) of disease amenable to complete resection, and do not have ascites. Patients are encouraged to participate in ongoing trials evaluating the true benefit of secondary cytoreduction.

Ancillary Palliative Surgical Procedures3

These procedures may be appropriate in select patients:

- Paracentesis/indwelling peritoneal catheter
- Thoracentesis/pleurodesis/video-assisted thoracoscopy/indwelling pleural catheter
- Ureteral stents/nephrostomy
- Gastrostomy tube/intestinal stents/surgical relief of intestinal obstruction

3Decisions on the use of ancillary procedures should be made in conjunction with a gynecologic oncology surgeon or a practitioner familiar with ovarian cancer patterns of recurrence.
General

• Patients with ovarian, Fallopian tube, or peritoneal cancer should be encouraged to participate in clinical trials during all aspects of their diagnosis and treatment.

• Prior to the initiation of any therapy:
 ▶ Patients of child-bearing potential who desire fertility-sparing procedures should be referred to an appropriate fertility specialist. (See NCCN Guidelines for Adolescent and Young Adult Oncology)
 ▶ Goals of systemic therapy should be discussed.

• Prior to recommending chemotherapy, requirements for adequate organ function and performance status should be met.

• Patients should be observed closely and treated for any complications during chemotherapy. Appropriate blood chemistry tests should be monitored. Appropriate dose reductions and modifications of chemotherapy should be performed depending on toxicities experienced and goals of therapy.

• After completion of chemotherapy, patients should be assessed for response during and following treatment and monitored for any long-term complications.

• Chemosensitivity/resistance and/or other biomarker assays are being used in some NCCN Member Institutions for decisions related to future chemotherapy in situations where there are multiple equivalent chemotherapy options available. The current level of evidence is not sufficient to supplant standard-of-care chemotherapy (category 3).

For patients with newly diagnosed ovarian, Fallopian tube, or primary peritoneal cancer:

• If they are eligible for chemotherapy, patients should be informed about the different options that are available— that is, IV chemotherapy, a combination of IP and IV chemotherapy, or a clinical trial — so they can decide which is the most appropriate option. (See OV-B 3 of 8 for dosing and schedule of these regimens).

• Prior to the administration of the combined IP and IV regimen, patients must be apprised of the increased toxicities with the combined regimen when compared to using IV chemotherapy alone (increased myelosuppression, renal toxicities, abdominal pain, neuropathy, GI toxicities, metabolic toxicities, and hepatic toxicities).

• Patients considered for the IP cisplatin and IP/IV paclitaxel regimen should have normal renal function prior to starting, a medically appropriate performance status based on the future toxicities of the IP/IV regimen, and no prior evidence of medical problems that could significantly worsen during chemotherapy (eg, pre-existing neuropathy).

• Prior to receiving and after receiving each cycle of IP cisplatin, adequate amounts of IV fluids need to be administered in order to prevent renal toxicity. After each cycle has been completed, patients need to be monitored carefully for myelosuppression, dehydration, electrolyte loss, end-organ toxicities (such as renal and hepatic damage), and all other toxicities. Patients often require IV fluids postchemotherapy in the outpatient setting to prevent or help treat dehydration.

• Refer to the original references (See Discussion) for full toxicity data, doses, schedule, and dose modifications.
PRINCIPLES OF SYSTEMIC THERAPY (2 of 8)

For patients who have recurrent ovarian, Fallopian tube, or primary peritoneal cancer:

• Refer to the original references (See Discussion) for full toxicity data, doses, schedule, and dose modifications.

• Patients should be informed about the following:
 1) Availability of clinical trials, including the risks and benefits of various treatments, which will depend on the number of prior lines of chemotherapy the patient has received, and
 2) The patient’s performance status, end-organ status, and pre-existing toxicities from prior regimens. If appropriate, palliative care should also be discussed as a possible treatment choice. See NCCN Guidelines for Palliative Care.

• Because of prior platinum exposure, myelosuppression occurs more frequently with any myelotoxic agent given in the recurrent setting.

• With repeat use of either carboplatin and/or cisplatin, patients are at an increased risk of developing a hypersensitivity reaction (also called an allergic reaction) that could be life-threatening. Thus, patients should be counseled about the risk that a hypersensitivity reaction may occur, educated about the signs and symptoms of hypersensitivity reactions, treated by medical staff who know how to manage hypersensitivity reactions, and treated in a medical setting where appropriate medical equipment is available in case of an allergic reaction. See Management of Drug Reactions (OV-C).

• Before any chemotherapy drug is given in the recurrent setting, the clinician should be familiar with the drug’s metabolism (ie, renal, hepatic) and should make certain that the patient is an appropriate candidate for the drug (eg, that the patient has adequate renal or hepatic function).

• Clinicians should be familiar with toxicity management and appropriate dose reduction.

• The schedule, toxicity, and potential benefits of any treatment should be thoroughly discussed with the patient and caregivers. Patient education should also include a discussion of precautions and measures to reduce the severity and duration of complications.

For elderly patients (>age 65) and/or those with comorbidities

• Elderly patients and those with comorbidities may be intolerant to the combination chemotherapy regimens recommended in these NCCN Guidelines. Single-agent platinum agents may be appropriate in selected patients.
 ▶ Algorithms have been developed for predicting chemotherapy toxicity. See the NCCN Guidelines for Older Adult Oncology.

Definitions used in the NCCN Guidelines for Ovarian Cancer

• Adjuvant therapy: Drugs, radiation, or other forms of supplemental treatment following cancer surgery intended to decrease the risk of disease recurrence or to primarily treat residual disease, whether gross or microscopic, following surgical cytoreduction.

• Neo-adjuvant therapy: Drugs, radiation, or other forms of treatment given prior to cancer surgery intended to reduce tumor burden in preparation for surgery.

• Recurrence therapy: Drugs, radiation, or other forms of treatment used to treat recurrent cancer, control symptoms, or increase length and/or quality of life at the time of clinical, biochemical, or radiographic evidence of recurrent cancer following the initial treatment.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Stage II-IV

- **IP/IV Regimen (for optimally debulked stage II-III disease)**
 - Paclitaxel 135 mg/m² IV continuous infusion over 3 or 24 h\(^b\) Day 1; cisplatin 75–100 mg/m² IP Day 2 after IV paclitaxel; paclitaxel 60 mg/m² IP Day 8. Repeat every 3 weeks x 6 cycles. (category 1)

- **IV Regimens**
 - Paclitaxel 175 mg/m² IV over 1 hour followed by carboplatin\(^c\) AUC 5–6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. (category 1)
 - Dose-dense paclitaxel 80 mg/m² IV over 1 hour Days 1, 8, and 15 followed by carboplatin\(^c\) AUC 5–6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. (category 1)
 - Paclitaxel 60 mg/m² IV over 1 hour followed by carboplatin AUC 2 IV over 30 minutes. Weekly for 18 weeks.\(^d\) (category 1)
 - Docetaxel 60–75 mg/m² IV over 1 hour followed by carboplatin\(^c\) AUC 5–6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. (category 1)
 - Carboplatin AUC 5 + pegylated liposomal doxorubicin 30 mg/m² every 4 weeks for 6 cycles.
 - Bevacizumab-containing regimens per ICON-7 and GOG-218:
 - Paclitaxel 175 mg/m² IV over 3 hours followed by carboplatin\(^c\) AUC 5–6 IV over 1 hour, and bevacizumab 7.5 mg/kg IV over 30–90 minutes Day 1. Repeat every 3 weeks x 5–6 cycles. Continue bevacizumab for up to 12 additional cycles. (category 2B)
 - Paclitaxel 175 mg/m² IV over 3 hours followed by carboplatin\(^c\) AUC 6 IV over 1 hour Day 1. Repeat every 3 weeks x 6 cycles. Starting Day 1 of cycle 2, give bevacizumab 15 mg/kg IV over 30–90 minutes every 3 weeks for up to 22 cycles. (category 2B)

Neoadjuvant Therapy

- Any of the above IV regimens can be used as neoadjuvant therapy before IDS.
- Bevacizumab-containing regimens should be used with caution before IDS due to potential interference with postoperative healing.
- After neoadjuvant therapy and IDS any of the above regimens (IV or IP/IV) can be considered as adjuvant therapy options.
- There are limited data for the use of IP chemotherapy regimens after neoadjuvant therapy and IDS. The following is an additional IP option after IDS: IV paclitaxel 135 mg/m² over 3 hours on Day 1, IP carboplatin AUC 6 IP Day 1, paclitaxel 60 mg/m² IP Day 8.\(^e\)
- A minimum of 6 cycles of treatment is recommended, including at least three cycles of adjuvant therapy after IDS.

\(^a\)See [Discussion](#) for references.

\(^b\)The published randomized trial regimen used IV continuous infusion paclitaxel over 24 h.

\(^c\)Due to changes in creatinine methodology, changes regarding carboplatin dosing can be considered. See [FDA carboplatin dosing statement](#).

\(^d\)This regimen may be considered for elderly patients or those with poor performance status.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SYSTEMIC THERAPY (4 of 8)
Primary Systemic Therapy Regimensa
Less Common Ovarian Histopathologies (LCOH)

Carcinosarcoma (MMMT)
\begin{itemize}
\item IP/IV and IV regimens (See options for stage II-IV disease on OV-B, 3 of 8)
\item Carboplatin/ifosfamide
\item Cisplatin/ifosfamide
\item Paclitaxel/ifosfamide (category 2B)
\end{itemize}

Clear Cell Carcinoma
\begin{itemize}
\item IP/IV and IV regimens (See options for stage II-IV disease on OV-B, 3 of 8)
\end{itemize}

Mucinous tumors
\begin{itemize}
\item IP/IV and IV regimens (See options for stage II-IV disease on OV-B, 3 of 8)
\item 5-FU/leucovorin/oxaliplatin
\item Capecitabine/oxaliplatin
\end{itemize}

Borderline and Low-Grade (Grade 1) Serous/Endometrioid Epithelial Carcinoma
\begin{itemize}
\item IP/IV and IV regimens (See options for stage II-IV disease on OV-B, 3 of 8)
\item Hormone therapy (Aromatase inhibitors [ie, anastrozole, letrozole], leuprolide acetate, tamoxifen) (category 2B)
\end{itemize}

Malignant Germ Cell Tumorsa
\begin{itemize}
\item BEP (bleomycin, etoposide, cisplatin)f
\item Bleomycin 30 units per week
\item Etoposide 100 mg/m2 daily for days 1–5, cisplatin 20 mg/m2 daily for days 1–5
\item Repeat every 21 days for 3 cycles for good risk (category 2B), or 4 cycles for poor risk.
\item Etoposide/carboplatina
\item For select patients with stage IB-III resected dysgerminoma for whom minimizing toxicity is critical, 3 cycles of etoposide/carboplatin can be used.
\item Carboplatin 400 mg/m2 on day 1 plus etoposide 120 mg/m2 on days 1, 2, and 3 every 4 weeks for 3 cycles.
\end{itemize}

Malignant Sex Cord-Stromal Tumors
\begin{itemize}
\item BEP (category 2B)f
\item Paclitaxel/carboplatin (category 2B)
\end{itemize}

aSee Discussion for references.
fRecommend pulmonary function test if considering bleomycin.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SYSTEMIC THERAPY (5 of 8)
Acceptable Recurrence Therapies for Epithelial (including LCOH) / Fallopian Tube / Primary Peritoneal Cancer

Cytotoxic Therapy (In alphabetical order)*

<table>
<thead>
<tr>
<th>Preferred Agents</th>
<th>Platinum-Sensitive Disease</th>
<th>Platinum-Resistant Disease</th>
<th>Targeted Therapy*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carboplatin</td>
<td>Docetaxel</td>
<td>Bevacizumab</td>
</tr>
<tr>
<td></td>
<td>Carboplatin/docetaxel</td>
<td>Etoposide, oral</td>
<td>Olaparib</td>
</tr>
<tr>
<td></td>
<td>Carboplatin/gemcitabine</td>
<td>Gemcitabine</td>
<td>Rucaparib</td>
</tr>
<tr>
<td></td>
<td>Carboplatin/gemcitabine/bevacizumab</td>
<td>Liposomal doxorubicin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboplatin/liposomal doxorubicin (category 1)</td>
<td>Liposomal doxorubicin/bevacizumab (category 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboplatin/paclitaxel, albumin bound (for patients with confirmed taxane hypersensitivity)</td>
<td>Paclitaxel (weekly) ± pazopanib</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboplatin/paclitaxel (category 1)</td>
<td>Paclitaxel (weekly)/bevacizumab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisplatin</td>
<td>Topotecan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisplatin/gemcitabine</td>
<td>Topotecan/bevacizumab</td>
<td></td>
</tr>
<tr>
<td>Additional options for mucinous carcinoma only:</td>
<td>5-FU/leucovorin/oxaliplatin ± bevacizumab (category 2B for bevacizumab)</td>
<td>5-FU/leucovorin/oxaliplatin (platinum-resistant disease)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capecitabine + oxaliplatin</td>
<td>Capecitabine + oxaliplatin</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: For LCOH, all regimens are category 2A unless indicated.

9Chemotherapy has not been shown to be beneficial in ovarian borderline epithelial tumors (LMP).

hPatients who progress on two consecutive regimens without evidence of clinical benefits have diminished likelihood of benefitting from additional therapy. (Griffiths RW, et al. Outcomes after multiple lines of chemotherapy for platinum-resistant epithelial cancers of the ovary, peritoneum, and Fallopian tube. Int J Gyn Ca 2011;21:58-65.) Decisions to offer clinical trials, supportive care, or additional therapy should be made on a highly individual basis.

iIn general, the panel would recommend combination regimens based on randomized trial data, especially in first relapses.

jPlatinum-based combination therapy should be considered for platinum-sensitive recurrences.

kIn patients who have not previously received bevacizumab.

lContraindicated for patients at increased risk of GI perforation.

mFor patients with deleterious germline BRCA-mutated (as detected by an FDA-approved test or other validated test performed in a CLIA-approved facility) advanced ovarian cancer who have been treated with three or more lines of chemotherapy.

nFor patients with deleterious germline and/or somatic BRCA mutated (as detected by an FDA-approved test or other validated test performed in a CLIA-approved facility) advanced ovarian cancer who have been treated with two or more lines of chemotherapy.
PRINCIPLES OF SYSTEMIC THERAPY (6 of 8)

Acceptable Recurrence Therapies for Epithelial (including LCOH\(^9\))/Fallopian Tube/Primary Peritoneal\(^h\)

<table>
<thead>
<tr>
<th>Cytotoxic Therapy (In alphabetical order)*</th>
<th>Hormonal Therapy*</th>
<th>Targeted Therapy*</th>
<th>Radiation Therapy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Agents(^o,22)</td>
<td>Aromatase inhibitors</td>
<td>Pazopanib (category 2B)(^23)</td>
<td>Palliative localized radiation therapy</td>
</tr>
<tr>
<td>Altretamine</td>
<td>Leuprolide acetate</td>
<td>Rucaparib(^n,24) (platinum-sensitive disease)</td>
<td></td>
</tr>
<tr>
<td>Capecitabine</td>
<td>Megestrol acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>Tamoxifen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifosfamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irinotecan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melphalan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel, albumin bound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pemetrexed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinorelbine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboplatin/paclitaxel/bevacizumab(^k,1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(platinum-sensitive disease)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: For LCOH, all regimens are category 2A unless indicated.

\(^9\)Chemotherapy has not been shown to be beneficial in ovarian borderline epithelial tumors (LMP).

\(^h\)Patients who progress on two consecutive regimens without evidence of clinical benefits have diminished likelihood of benefitting from additional therapy. (Griffiths RW, et al. Outcomes after multiple lines of chemotherapy for platinum-resistant epithelial cancers of the ovary, peritoneum, and Fallopian tube. Int J Gyn Ca 2011;21:58-65.) Decisions to offer clinical trials, supportive care, or additional therapy should be made on a highly individual basis.

\(^k\)In patients who have not previously received bevacizumab.

\(^l\)Contraindicated for patients at increased risk of GI perforation.

\(^n\)For patients with deleterious germline and/or somatic BRCA mutated (as detected by an FDA-approved test or other validated test performed in a CLIA-approved facility) advanced ovarian cancer who have been treated with two or more lines of chemotherapy.

\(^o\)Many of these agents have not been tested in patients who have been treated with modern chemotherapy regimens.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
<table>
<thead>
<tr>
<th>Malignant Germ Cell Tumors<sup>p</sup></th>
<th>Potentially Curative Therapy:</th>
<th>Hormonal Therapy</th>
<th>Targeted Therapy</th>
<th>Radiation Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High-dose chemotherapy<sup>p</sup></td>
<td></td>
<td></td>
<td>Palliative localized radiation therapy</td>
</tr>
<tr>
<td></td>
<td>TIP (paclitaxel, ifosfamide, cisplatin)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Palliative Therapy Only:
- Cisplatin/etoposide
- Docetaxel
- Docetaxel/carboplatin
- Paclitaxel
- Paclitaxel/ifosfamide
- Paclitaxel/carboplatin
- Paclitaxel/gemcitabine
- VIP (etoposide, ifosfamide, cisplatin)
- VeIP (vinblastine, ifosfamide, cisplatin)
- VAC (vincristine, dactinomycin, cyclophosphamide)
- TIP

Supportive care only (See NCCN Supportive Care Guidelines)

<table>
<thead>
<tr>
<th>Malignant Sex Cord-Stromal Tumors<sup>q</sup></th>
<th>Docetaxel</th>
<th>Paclitaxel</th>
<th>Paclitaxel/ifosfamide</th>
<th>Paclitaxel/carboplatin</th>
<th>VAC</th>
<th>Supportive care only (See NCCN Supportive Care Guidelines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatase inhibitors (e.g., anastrozole, letrozole)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bevacizumab (single agent)</td>
</tr>
<tr>
<td>Leuprolide acetate (for granulosa cell tumors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^pHigh-dose chemotherapy regimens vary among institutions. Some patients are potentially curable with stem cell transplantation. Patients with potentially curable recurrent germ cell disease should be referred to a tertiary care institution for stem-cell transplant consultation and potentially curative therapy.

^qSee WHO Histologic Classification (OV-D).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
References for Acceptable Recurrence Therapies

Overview

- Virtually all drugs used in oncology have the potential to cause adverse drug reactions while being infused, which can be classified as either infusion or allergic reactions.\(^1\)
 - Infusion reactions are often characterized by milder symptoms (eg, hot flushing, rash).
 - Hypersensitivity (allergic) reactions are often characterized by more severe symptoms (eg, shortness of breath, generalized hives/itching, changes in blood pressure).
- Most adverse drug reactions that occur are mild reactions, but more severe reactions can occur.\(^2,3\)
 - Anaphylaxis is a rare type of very severe allergic reaction that can occur with the platinum and taxane agents (and others less commonly), can cause cardiovascular collapse, and can be life-threatening.\(^4-6\)
 - Drug reactions can occur either during the infusion or following completion of the infusion (and can even occur days later).
- In gynecologic oncology treatment, drugs that more commonly cause adverse reactions include carboplatin, cisplatin, docetaxel, liposomal doxorubicin, oxaliplatin, and paclitaxel.\(^1\)
 - Adverse reactions associated with taxane drugs (ie, docetaxel, paclitaxel) and biotherapeutic agents tend to be infusion-related often attributed to cremophor in paclitaxel and tend to occur during the first few cycles of treatment (although they can be seen during any infusion regardless of how many previous cycles were administered).
 - Adverse reactions associated with platinum drugs (ie, carboplatin, cisplatin), a true allergy, tend to occur following re-exposure to the inciting drug or less commonly at the completion of initial chemotherapy (ie, cycle 6 of a planned 6 treatments).\(^3\)

- Preparation for a possible drug reaction
 - Patients and their families should be counseled about the possibility of a drug reaction and the signs and symptoms of one. Patients should be told to report any signs and symptoms of a drug reaction, especially after they have left the clinic (ie, delayed rash).
 - Clinicians and nursing staff should be prepared for the possibility of a drug reaction every time a patient is infused with a drug. Standing orders should be written for immediate intervention in case a severe drug reaction occurs and the treatment area should have appropriate medical equipment in case of a life-threatening reaction.\(^5\)
 - Epinephrine (intramuscular 0.3 mL of 1 mg/mL solution/Epipen) should be used for any patient experiencing hypotension (systolic BP of <90 mm Hg) with or without other symptoms of an allergic/hypersensitivity reaction during or shortly after any chemotherapy drug treatment. In the setting of acute cardiopulmonary arrest, standard resuscitation (ACLS) procedures should be followed.
 - Desensitization refers to a process of rendering the patient less likely to react in response to an allergen and can be considered an option for patients who have had drug reactions.\(^1,7-9\)
 - If a patient has previously had a very severe life-threatening reaction, the implicated drug should not be used again unless under guidance of an allergist or specialist with desensitization experience.

References on OV-C 3 of 7
Continued on OV-C 2 of 7
MANAGEMENT OF DRUG REACTIONS (2 of 7)

Infusion Reactions

- Symptoms include: hot flushing, rash, fever, chest tightness, mild blood pressure changes, back pain, and chills.
- Symptoms usually can be treated by decreasing the infusion rate and resolve quickly after stopping the infusion. However, patients who have had mild reactions to carboplatin, cisplatin, or oxaliplatin may develop more serious reactions even when the platinum drug is slowly infused; therefore, consider consultation with an allergist.10
- More common with paclitaxel (27% of patients); however, mild reactions can occur with liposomal doxorubicin.10
- If an infusion reaction has previously occurred to a taxane:
 - For mild infusion reactions (eg, flushing, rash, chills), patients may be rechallenged with the taxane if:
 1) the patient, physician, and nursing staff are all comfortable with this plan;
 2) the patient has been counseled appropriately; and
 3) emergency equipment is available in the clinic area.
 - Typically the taxane infusion can be re-started at a much slower rate, and the rate can be slowly increased as tolerated as per the treating clinician’s judgment.7,11 Note that this slow infusion is different from desensitization.
 - Many institutions have nursing policies that stipulate how to reinfuse the drug if the patient has had a prior infusion reaction.

Allergic Reactions (ie, True Drug Allergies)

- Symptoms include: rash, edema, shortness of breath (bronchospasm), syncope or pre-syncope, chest pain, tachycardia, hives/itching, changes in blood pressure, nausea, vomiting, chills, changes in bowel function, and occasionally feeling of impending doom.
- Symptoms may continue to persist after stopping infusion and/or after treatment interventions.
- More common with platinum drugs such as carboplatin (16% of patients), cisplatin, and oxaliplatin.11 Mild reactions can occur with platinum agents.11
- Patients who are at higher risk of developing a hypersensitivity (allergic) reaction include those in the following settings:
 - Re-introduction of the drug after a period of no exposure and following multiple cycles of the drug during the first and subsequent exposures
 - IV administration of the drug rather than oral or IP administration
 - With allergies to other drugs
 - Those who have previously had a reaction
- If an allergic reaction has previously occurred:
 - Consider consultation with an allergist (or qualified medical or gynecologic oncologist) and skin testing for patients who have experienced a platinum reaction (eg, carboplatin-hypersensitivity reaction).11-13
 - Patients who have had mild reactions may develop more serious reactions even when the platinum drug is slowly infused.11
 - For very severe life-threatening reactions (ie, anaphylaxis), the implicated drug should not be used again unless under guidance of an allergist or specialist with desensitization experience.
 - For more severe reactions — such as those involving blood pressure changes, dyspnea, tachycardia, widespread urticaria, or hypoxia — the treating clinician should consult an allergist or specialist with desensitization expertise prior to rechallenge.
 - If it is appropriate to give the drug again, patients should be desensitized prior to resuming chemotherapy even if the symptoms have resolved. Patients must be desensitized with each infusion if they previously had a drug reaction.7-9

References on OV-C 3 of 7
MANAGEMENT OF DRUG REACTIONS (3 of 7)

REFERENCES

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Drug Reaction to Platinum Agents on OV-C 4 of 7

See Drug Reaction to Taxane, Liposomal Doxorubicin, or Biotherapeutic Agents on OV-C 6 of 7
NCCN Guidelines Version 1.2017

Epithelial Ovarian Cancer/Fallopian Tube Cancer/ Primary Peritoneal Cancer & Less Common Histopathologies

DRUG REACTION TO PLATINUM AGENTS

REACTION

- **Mild reaction**
 - First exposure (platinum naive)
 - Symptoms often resolve quickly after stopping infusion
 - Administer H1 blocker antihistamine

- **Severe reaction**
 - Second or further exposure
 - Stop infusion
 - Administer H1 blocker antihistamine to treat symptoms
 - Corticosteroid ± IM epinephrine if symptoms do not quickly resolve

- **Life-threatening reaction**
 - (ie, anaphylaxis) (acute onset, generalized hives, respiratory compromise, severe hypotension, GI symptoms [nausea, vomiting])

MANAGEMENT/TREATMENT

- **First exposure**
 - Decrease the infusion rate
 - Administer H1 blocker antihistamine
 - Consider allergy consultation

- **Second or further exposure**
 - Consider allergy consultation
 - Do not rechallenge/readminister drug until evaluated by allergist or specialist with desensitization expertise
 - Potential candidate for desensitization with each infusion

IV or IP drug reaction to platinum agents

- **Mild reaction**
 - (hot flushing, rash, pruritus)
 - Stop infusion
 - Administer H1 blocker antihistamine

See OV-C 5 of 7

1. Most mild reactions are infusion reactions and more commonly are caused by taxanes (ie, docetaxel, paclitaxel), but can also occur with platinum agents (ie, carboplatin, cisplatin).

2. Most severe reactions are allergic reactions and more commonly are caused by platinum agents.

3. H1 blocker antihistamine (eg, diphenhydramine or hydroxyzine); H2 blockers (eg, cimetidine, famotidine); corticosteroids (eg, methylprednisolone, hydrocortisone, dexamethasone).

4. In the setting of acute cardiopulmonary arrest, standard resuscitation (ACLS) procedures should be followed.

5. Mild reactions can progress to severe reactions by re-exposure. An allergy consultation may provide skin testing and evaluate sensitization and the risk for further, more severe reactions.

6. Referral to academic center with expertise in desensitization is preferred.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Evaluating and managing pediatric patients with cancer: NCCN guidelines version 2.2017

Key Points

- **Pediatric Patients with Cancer**
 - The management of pediatric patients with cancer is guided by the National Comprehensive Cancer Network (NCCN) guidelines. These guidelines are periodically updated to reflect the latest research and clinical practices.
 - The recommendations are categorized into several levels of evidence and strength, providing a structured approach to decision-making.

Guidelines Highlights

- **Diagnosis and Staging**
 - Early detection and accurate diagnosis are crucial.
 - Imaging studies, biopsies, and genetic testing are integral to staging.

- **Treatment Planning**
 - Treatment plans are tailored to individual patient needs.
 - Considerations include age, disease type, and patient preferences.

- **Follow-Up and Support**
 - Regular follow-up visits are essential for monitoring response to treatment and managing side effects.
 - Psychological and social support services are recommended throughout treatment and beyond.

Evidence-Based Approaches

- The guidelines are evidence-based, integrating the latest research and clinical practices.
- They are updated regularly to reflect new information and advances in pediatric oncology.

Conclusion

- The NCCN guidelines provide a comprehensive framework for the care of pediatric patients with cancer, emphasizing the importance of multidisciplinary approaches and individualized treatment plans.

Access and Resources

- The guidelines are available online, providing easy access to current and up-to-date information.
- Resources include detailed protocols, patient education materials, and clinical practice guidelines.

MANAGEMENT OF DRUG REACTIONS (6 of 7)

DRUG REACTION TO TAXANE, LIPOSOMAL DOXORUBICIN, OR BIOTHERAPEUTIC AGENTS

IV or IP drug reaction to taxane, liposomal doxorubicin, or biotherapeutic agents

- **Mild reaction**
 - (hot flushing, rash, pruritus, pain in chest/abdomen/pelvis/back)
 - **Management**: Stop infusion. Symptoms often resolve quickly after stopping infusion. Administer H1 blocker antihistamine to treat symptoms.

- **Severe reaction**
 - (shortness of breath, changes in blood pressure requiring treatment, dyspnea, GI symptoms [nausea, vomiting], pain in chest/abdomen/pelvis/back, feeling of impending doom/anxiety/something wrong)
 - **Management**: Stop infusion. If staff agree and vital signs remain stable, rechallenge with drug at slower infusion rate.

- **Life-threatening reaction**
 - (acute onset, generalized hives, respiratory compromise, severe hypotension, GI symptoms [nausea, vomiting], pain in chest/abdomen/pelvis/back, feeling of impending doom/anxiety/something wrong)
 - **Management**: Stop infusion. If repeat mild reaction, then do not rechallenge/readminister. Potential candidate for desensitization.

1. Most mild reactions are infusion reactions and more commonly are caused by taxanes (ie, docetaxel, paclitaxel), but can also occur with platinum agents (ie, carboplatin, cisplatin).
2. Most severe reactions are allergic reactions and more commonly are caused by platinum agents.
3. H1 blocker antihistamine (eg, diphenhydramine or hydroxyzine); H2 blockers (eg, cimetidine, famotidine); corticosteroids (eg, methylprednisolone, hydrocortisone, dexamethasone).

See **Drug Reaction to Platinum Agents on OV-C 4 of 7**
DRUG REACTION TO TAXANE, LIPOSOMAL DOXORUBICIN, OR BIOOTHERAPEUTIC AGENTS

MANAGEMENT OF DRUG REACTIONS (7 of 7)

<table>
<thead>
<tr>
<th>REACTION</th>
<th>MANAGEMENT/TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild reaction¹ (hot flushing, rash, pruritus, pain in chest/abdomen/pelvis/back)</td>
<td>!See OV-C 6 of 7</td>
</tr>
</tbody>
</table>
| Severe reaction² (shortness of breath, changes in blood pressure requiring treatment, dyspnea, GI symptoms [nausea, vomiting], pain in chest/abdomen/pelvis/back, feeling of impending doom/anxiety/something wrong) | • Stop infusion
• Administer oxygen, nebulized bronchodilator, H1 blocker antihistamine, H2 blockers, corticosteroid³
IM epinephrine if needed⁴ |
| Life-threatening reaction² (ie, anaphylaxis) (acute onset, generalized hives, respiratory compromise, severe hypotension, GI symptoms [nausea, vomiting], pain in chest/abdomen/pelvis/back, feeling of impending doom/anxiety/something wrong) | • Stop infusion
• Administer IM epinephrine⁴, oxygen, nebulized bronchodilator, H1 blocker antihistamine, H2 blockers, corticosteroid³
→ Do not rechallenge/readminister drug until evaluated by allergist or specialist with desensitization expertise
→ Potential candidate for desensitization⁶,⁷ with each infusion |

¹Most mild reactions are infusion reactions and more commonly are caused by taxanes (ie, docetaxel, paclitaxel), but can also occur with platinum agents (ie, carboplatin, cisplatin).

²Most severe reactions are allergic reactions and more commonly are caused by platinum agents.

³H1 blocker antihistamine (eg, diphenhydramine or hydroxyzine); H2 blockers (eg, cimetidine, famotidine); corticosteroids (eg, methylprednisolone, hydrocortisone, dexamethasone).

⁴In the setting of acute cardiopulmonary arrest, standard resuscitation (ACLS) procedures should be followed.

⁵Referral to academic center with expertise in desensitization is preferred.

⁷For both taxanes and platinum analogues, it is preferred that anyone with a life-threatening reaction be evaluated and referred to an academic center if the drug is still considered first line.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
WHO HISTOLOGIC CLASSIFICATION (1 of 2)1,2

<table>
<thead>
<tr>
<th>Serous Tumors</th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous cystadenoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous adenofibroma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous surface papilloma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous borderline tumor/atypical proliferative serous tumor</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous borderline tumor-micropapillary variant/non-invasive low-grade serous carcinoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous high-grade serous</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous low-grade serous</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brenner Tumors</th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brenner tumor</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Borderline Brenner tumor/atypical proliferative Brenner tumor</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Malignant Brenner tumor</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mucinous Tumors</th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucinous cystadenoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Malignant</td>
</tr>
<tr>
<td>Mucinous adenofibroma</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Mucinous borderline tumor/atypical proliferative mucinous tumor</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Mucinous carcinoma</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seromucinous Tumors</th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seromucinous cystadenoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Malignant</td>
</tr>
<tr>
<td>Seromucinous adenofibroma</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Seromucinous borderline tumor/atypical proliferative seromucinous tumor</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Seromucinous carcinoma</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endometrioid Tumors</th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endometriotic cyst</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Endometriotic cystadenoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Endometriotic adenofibroma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Endometrioid borderline tumor/atypical proliferative endometrioid tumor</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Endometrioid carcinoma</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serous Tumors</th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous cystadenoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous adenofibroma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous surface papilloma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Serous borderline tumor/atypical proliferative serous tumor</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clear Cell Tumors</th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell cystadenoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Clear cell adenofibroma</td>
<td>Benign</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Clear cell borderline tumor/atypical proliferative clear cell tumor</td>
<td>Benign</td>
<td>Borderline</td>
<td>Malignant</td>
</tr>
<tr>
<td>Clear cell carcinoma</td>
<td>Benign</td>
<td>Benign</td>
<td>Malignant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixed Epithelial & Mesenchymal Tumors</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosarcoma</td>
<td>Malignant</td>
</tr>
<tr>
<td>Carcinosarcoma</td>
<td>Malignant</td>
</tr>
</tbody>
</table>

1Reproduced with permission from Kurman RJ, Carcangiu ML, Herrington CS, Young RH. World Health Organization Classification of Tumours of the Female Reproductive Organs. IARC, Lyon, 2014.

2Borderline = Unspecified, borderline, or uncertain behavior.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
WHO HISTOLOGIC CLASSIFICATION (2 of 2) 1,2

<table>
<thead>
<tr>
<th>Sex Cord-Stromal Tumors:</th>
<th>Germ Cell Tumors</th>
<th>Miscellaneous Tumors</th>
<th>Mesothelial Tumors</th>
<th>Soft Tissue Tumors</th>
<th>Tumor-like Lesions</th>
<th>Lymphoid and Myeloid Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Stromal Tumors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fibroma</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cellular fibroma</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Thecoma</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Luteinized thecoma with sclerosing peritonitis</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fibrosarcoma</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sclerosing stromal tumor</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Signet-ring stromal tumor</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Microcystic stromal tumor</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Leydig cell tumor</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Steroid cell tumor</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Steroid cell tumor, malignant</td>
<td>Malignant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex Cord-Stromal Tumors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Sex Cord Tumors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Adult granulosa cell tumor</td>
<td>Malignant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Juvenile granulosa cell tumor</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sertoli cell tumor</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sex cord tumor with annular tubules</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Sex Cord-Stromal Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sertoli-Leydig cell tumors</td>
<td>Benign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>› Well differentiated</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>› Moderately differentiated</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>◊ With heterologous elements</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Poorly differentiated</td>
<td>Malignant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>◊ With heterologous elements</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Retiform</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>◊ With heterologous elements</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sex cord-stromal tumors, NOS</td>
<td>Borderline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monodermal Teratoma & Somatic-type Tumors from Dermoid Cyst						
• Struma ovari, benign	Benign					
• Struma ovari, malignant	Malignant					
• Carcinoid	Borderline					
› Strumal carcinoid	Malignant					
› Mucinous carcinoid	Malignant					
• Neuroectodermal-type tumors	Benign					
• Sebaceous tumors	Borderline					
› Sebaceous adenoma	Malignant					
› Sebaceous carcinoma	Malignant					
• Other rare monodermal teratomas	Malignant					
• Carcinomas	Malignant					
› Squamous cell carcinoma	Malignant					
• Others	Malignant					

Germ Cell- Sex Cord-Stromal Tumors						
• Gonadoblastoma, including gonadoblastoma with malignant germ cell tumor	Borderline					
• Mixed germ cell- sex cord-stromal tumor, unclassified	Borderline					

1Reproduced with permission from Kurman RJ, Carcangiu ML, Herrington CS, Young RH. World Health Organization Classification of Tumours of the Female Reproductive Organs. IARC, Lyon, 2014.

2Borderline= Unspecified, borderline, or uncertain behavior.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Staging*

Table 1
American Joint Committee on Cancer (AJCC)
TNM and FIGO Staging System for Ovarian and Primary Peritoneal Cancer (7th ed., 2010)

<table>
<thead>
<tr>
<th>Primary Tumor (T)</th>
<th>TNM</th>
<th>FIGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
<td></td>
</tr>
<tr>
<td>T1 I</td>
<td>Tumor limited to ovaries (one or both)</td>
<td></td>
</tr>
<tr>
<td>T1a IA</td>
<td>Tumor limited to one ovary; capsule intact, no tumor on ovarian surface. No malignant cells in ascites or peritoneal washings</td>
<td></td>
</tr>
<tr>
<td>T1b IB</td>
<td>Tumor limited to both ovaries; capsules intact, no tumor on ovarian surface. No malignant cells in ascites or peritoneal washings</td>
<td></td>
</tr>
<tr>
<td>T1c IC</td>
<td>Tumor limited to one or both ovaries with any of the following: capsule ruptured, tumor on ovarian surface, malignant cells in ascites or peritoneal washings</td>
<td></td>
</tr>
<tr>
<td>T2 II</td>
<td>Tumor involves one or both ovaries with pelvic extension</td>
<td></td>
</tr>
<tr>
<td>T2a IIA</td>
<td>Extension and/or implants on uterus and/or tube(s). No malignant cells in ascites or peritoneal washings</td>
<td></td>
</tr>
<tr>
<td>T2b IIB</td>
<td>Extension to and/or implants on other pelvic tissues. No malignant cells in ascites or peritoneal washings</td>
<td></td>
</tr>
<tr>
<td>T2c IIC</td>
<td>Pelvic extension and/or implants (T2a or T2b) with malignant cells in ascites or peritoneal washings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1 IIC</td>
<td>Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1 IV</td>
<td>Distant metastasis (excludes peritoneal metastasis)</td>
</tr>
</tbody>
</table>

Note: Liver capsule metastasis is T3/stage III; liver parenchymal metastasis, M1/stage IV. Pleural effusion must have positive cytology for M1/stage IV.

*An update to the FIGO staging guidelines is available. See FIGO Guidelines (ST-5).
Staging*

An update to the FIGO staging guidelines is available. [See FIGO Guidelines (ST-5).](#)

<table>
<thead>
<tr>
<th>Stage Grouping</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IC</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II A</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II B</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II C</td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III A</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III B</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III C</td>
<td>T3c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Note: For histologic grade and histopathologic type, see AJCC Staging Manual.

The staging system for ovarian and primary peritoneal cancer is also used for malignant germ cell tumors, malignant sex cord-stromal tumors, and carcinosarcoma (malignant mixed Müllerian tumors).

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by Springer Science+Business Media, LLC (SBM). (For complete information and data supporting the staging tables, visit www.cancerstaging.net.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.
Staging*

Table 2

American Joint Committee on Cancer (AJCC)

TNM and FIGO Staging System for Fallopian Tube Cancer (7th ed., 2010)

Primary Tumor (T)

<table>
<thead>
<tr>
<th>TNM</th>
<th>FIGO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td></td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td></td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis**</td>
<td></td>
<td>Carcinoma in situ (limited to tubal mucosa)</td>
</tr>
<tr>
<td>T1</td>
<td>I</td>
<td>Tumor limited to the Fallopian tube(s)</td>
</tr>
<tr>
<td>T1a</td>
<td>IA</td>
<td>Tumor limited to one tube, without penetrating the serosal surface; no ascites</td>
</tr>
<tr>
<td>T1b</td>
<td>IB</td>
<td>Tumor limited to both tubes, without penetrating the serosal surface; no ascites</td>
</tr>
<tr>
<td>T1c</td>
<td>IC</td>
<td>Tumor limited to one or both tubes with extension onto or through the tubal serosa, or with malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2</td>
<td>II</td>
<td>Tumor involves one or both Fallopian tubes with pelvic extension</td>
</tr>
<tr>
<td>T2a</td>
<td>IIA</td>
<td>Extension and/or metastasis to the uterus and/or ovaries</td>
</tr>
<tr>
<td>T2b</td>
<td>IIB</td>
<td>Extension to other pelvic structures</td>
</tr>
<tr>
<td>T2c</td>
<td>IIC</td>
<td>Pelvic extension with malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T3</td>
<td>III</td>
<td>Tumor involves one or both Fallopian tubes, with peritoneal implants outside the pelvis</td>
</tr>
<tr>
<td>T3a</td>
<td>IIIA</td>
<td>Microscopic peritoneal metastasis outside the pelvis</td>
</tr>
<tr>
<td>T3b</td>
<td>IIIB</td>
<td>Macroscopic peritoneal metastasis outside the pelvis 2 cm or less in greatest dimension</td>
</tr>
<tr>
<td>T3c</td>
<td>IIIC</td>
<td>Peritoneal metastasis outside the pelvis and more than 2 cm in diameter</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>M</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis (excludes metastasis within the peritoneal cavity)</td>
</tr>
</tbody>
</table>

Note: FIGO no longer includes stage 0 (Tis)

Note: Liver capsule metastasis is T3/stage III; liver parenchymal metastasis, M1/stage IV. Pleural effusion must have positive cytology for M1/stage IV.

*An update to the FIGO staging guidelines is available. [See FIGO Guidelines (ST-5)].

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by Springer Science+Business Media, LLC (SBM). (For complete information and data supporting the staging tables, visit www.cancerstaging.net.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.
Table 2 (Continued)

American Joint Committee on Cancer (AJCC)

TNM and FIGO Staging System for Fallopian Tube Cancer (7th ed., 2010)

Stage Grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tis</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0**</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IC</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIC</td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>T3c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

*Note: FIGO no longer includes stage 0 (Tis)

Note: For histologic grade and histopathologic type, see AJCC Staging Manual.

*An update to the FIGO staging guidelines is available. [See FIGO Guidelines (ST-5).](#)

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by Springer Science+Business Media, LLC (SBM). (For complete information and data supporting the staging tables, visit www.cancerstaging.net.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.
Staging

International Federation of Gynecology and Obstetrics (FIGO)
FIGO Guidelines: Staging Classification for Cancer of the Ovary, Fallopian Tube, and Peritoneum

<table>
<thead>
<tr>
<th>FIGO</th>
<th>TNM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1</td>
<td>Tumor confined to ovaries or Fallopian tube(s)</td>
</tr>
<tr>
<td>IA</td>
<td>T1a</td>
<td>Tumor limited to 1 ovary (capsule intact) or Fallopian tube; no tumor on ovarian or Fallopian tube surface; no malignant cells in the ascites or peritoneal washings</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
<td>Tumor limited to both ovaries (capsules intact) or Fallopian tubes; no tumor on ovarian or Fallopian tube surface; no malignant cells in the ascites or peritoneal washings</td>
</tr>
<tr>
<td>IC</td>
<td></td>
<td>Tumor limited to 1 or both ovaries or Fallopian tubes, with any of the following:</td>
</tr>
<tr>
<td>IC1</td>
<td>T1c1</td>
<td>Surgical spill</td>
</tr>
<tr>
<td>IC2</td>
<td>T1c2</td>
<td>Capsule ruptured before surgery or tumor on ovarian or Fallopian tube surface</td>
</tr>
<tr>
<td>IC3</td>
<td>T1c3</td>
<td>Malignant cells in the ascites or peritoneal washings</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>Tumor involves 1 or both ovaries or Fallopian tubes with pelvic extension (below pelvic brim) or primary peritoneal cancer</td>
</tr>
<tr>
<td>IIA</td>
<td>T2a</td>
<td>Extension and/or implants on uterus and/or Fallopian tubes and/or ovaries</td>
</tr>
<tr>
<td>IIB</td>
<td>T2b</td>
<td>Extension to other pelvic intraperitoneal tissues</td>
</tr>
<tr>
<td>III</td>
<td>T1/T2-N1</td>
<td>Tumor involves 1 or both ovaries or Fallopian tubes, or primary peritoneal cancer, with cytologically or histologically confirmed spread to the peritoneum outside the pelvis and/or metastasis to the retroperitoneal lymph nodes</td>
</tr>
<tr>
<td>IIIA1</td>
<td></td>
<td>Positive retroperitoneal lymph nodes only (cytologically or histologically proven):</td>
</tr>
<tr>
<td>IIIB</td>
<td>T3b-N0/N1</td>
<td>Macroscopic peritoneal metastasis beyond the pelvis up to 2 cm in greatest dimension, with or without metastasis to the retroperitoneal lymph nodes</td>
</tr>
<tr>
<td>IIIIC</td>
<td>T3c-N0/N1</td>
<td>Macroscopic peritoneal metastasis beyond the pelvis more than 2 cm in greatest dimension, with or without metastasis to the retroperitoneal lymph nodes (includes extension of tumor to capsule of liver and spleen without parenchymal involvement of either organ)</td>
</tr>
<tr>
<td>IV</td>
<td>Any T, any N, M1</td>
<td>Distant metastasis excluding peritoneal metastases</td>
</tr>
<tr>
<td>IVA</td>
<td></td>
<td>Pleural effusion with positive cytology</td>
</tr>
<tr>
<td>IVB</td>
<td></td>
<td>Parenchymal metastases and metastases to extra-abdominal organs (including inguinal lymph nodes and lymph nodes outside of the abdominal cavity)</td>
</tr>
</tbody>
</table>

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Discussion

Discussion

This discussion is being updated to correspond with the newly updated algorithm. Last updated 06/28/16

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview ..MS-2
Screening ..MS-3
Staging ...MS-4
Caveat ...MS-4
Literature Search Criteria and Guidelines Update Methodology5
Epithelial Ovarian Cancer ...MS-5
Recommended Workup ...MS-5
Primary Treatment ..MS-7
Recommendations After Primary TreatmentMS-15
Follow-up RecommendationsMS-16
Recurrent Disease ..MS-17
Less Common Ovarian Histopathologies..........................MS-21
Recommended Workup ...MS-21
Surgery ...MS-22
Clear Cell Carcinoma ...MS-22
Mucinous Carcinomas ..MS-22
Grade 1 (Low-Grade) Serous/Endometrioid Epithelial Carcinomas
Malignant Germ Cell TumorsMS-24
Malignant Sex Cord-Stromal TumorsMS-26
Carcinosarcomas (Malignant Mixed Müllerian Tumors)MS-27
Borderline Epithelial Tumors (Low Malignant Potential Tumors)....27
Recommended Readings ..MS-29
References ..MS-31
Ovarian neoplasms consist of several histopathologic entities; treatment depends on the specific tumor type. Epithelial ovarian cancer comprises the majority of malignant ovarian neoplasms (about 90%); however, other less common pathologic subtypes may occur. These NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Ovarian Cancer were originally published 20 years ago and have been subsequently updated at least once every year. These NCCN Guidelines® discuss epithelial ovarian cancer and less common ovarian histopathologies (LCOH) including, carcinosarcomas (malignant mixed Müllerian tumors [MMMTs] of the ovary), clear cell carcinomas, mucinous carcinomas, grade 1 (low-grade) serous carcinomas/endometrioid epithelial carcinomas, borderline epithelial tumors (also known as low malignant potential tumors), malignant sex cord-stromal tumors, and malignant germ cell tumors. The NCCN Guidelines also discuss Fallopian tube cancer and primary peritoneal cancer, which are less common neoplasms that are managed in a similar manner to epithelial ovarian cancer. However, the LCOH may be managed differently.

These NCCN Guidelines also include sections on Principles of Surgery, Principles of Systemic Therapy, Management of Drug Reactions, and WHO Histologic Classification. The Summary of the Guidelines Updates section in the algorithm briefly describes the new changes for 2016 (see the NCCN Guidelines for Ovarian Cancer). The section on LCOH was extensively revised for 2016 (see Less Common Ovarian Histopathologies in this Discussion and the NCCN Guidelines for Less Common Ovarian Histopathologies).

Epidemiologic studies have identified risk factors in the etiology of ovarian cancer. A 30% to 60% decreased risk for cancer is associated with younger age at pregnancy and first birth (≤ 25 years), the use of oral contraceptives, and/or breastfeeding. Conversely, nulliparity or older age (>35 years) at pregnancy and first birth confers an increased risk for ovarian cancer. Data suggest that postmenopausal hormone therapy and pelvic inflammatory disease may increase the risk for ovarian cancer. Obesity does not appear to be associated with the most aggressive types of ovarian cancer. Environmental factors have been investigated, but so far they have not been conclusively associated with the development of this neoplasm.

Family history (primarily patients having 2 or more first-degree relatives with ovarian cancer)—including linkage with BRCA1 and BRCA2 genotypes (hereditary breast and ovarian cancer [HBOC] syndrome) or families affected by Lynch syndrome (hereditary nonpolyposis colorectal cancer [HNPCC] syndrome)—is associated with early-onset disease. However, these patients account for only 15% of all women who have ovarian cancer. In women at high risk (with either BRCA1 or BRCA2 mutations), prophylactic bilateral salpingo-oophorectomy (BSO) is associated with a reduced risk for breast, ovarian, Fallopian tube, and primary peritoneal cancers (see Risk-Reducing Salpingo-Oophorectomy).
(RRSO) Protocol (BRCA/HBOC syndrome) in the NCCN Guidelines for Ovarian Cancer, Cytoreductive Surgery in this Discussion, and Risk Reduction Surgery in the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian, available at NCCN.org. However, there is a residual risk for primary peritoneal cancer after prophylactic BSO in these women at high risk for cancer. Occult ovarian cancer is sometimes found after prophylactic salpingo-oophorectomy, thus emphasizing the need for careful pathologic review of the ovaries and tubes (see Risk-Reducing Salpingo-Oophorectomy [RRSO] Protocol [BRCA/HBOC syndrome] in the NCCN Guidelines for Ovarian Cancer). The risks of surgery include injury to the bowel, bladder, ureter, and vessels. Recently, it has been suggested that the Fallopian tube may be the origin of serous ovarian and primary peritoneal cancers, including serous intraepithelial carcinoma of the Fallopian tube (also known as serous tubal intraepithelial carcinoma [STIC]). A referral to a gynecologic oncologist/comprehensive cancer center is recommended for management of occult STIC.

Screening

Because of the location of the ovaries and the biology of most epithelial cancers, it has been difficult to diagnose ovarian cancer at an earlier, more curable stage. However, evaluations of patients with newly diagnosed ovarian cancer have resulted in consensus guidelines for ovarian cancer symptoms, which may enable earlier identification of patients who may be at an increased risk of having developed early-stage ovarian cancer. Symptoms suggestive of ovarian cancer include: bloating, pelvic or abdominal pain, difficulty eating or feeling full quickly, and urinary symptoms (urgency or frequency), especially if these symptoms are new and frequent (>12 d/mo). Physicians evaluating women with this constellation of symptoms must be cognizant of the possibility that ovarian pathology may be causing these symptoms. However, some evidence suggests that the screening test using these symptoms is not as sensitive or specific as necessary, especially in those with early-stage disease.

Randomized data do not yet support routine screening for ovarian cancer in the general population, and routine screening is not currently recommended by any professional society. Some physicians follow women with high-risk factors (eg, those with BRCA mutations, those with a family history) using cancer antigen 125 (CA-125) monitoring and endovaginal ultrasound; however, prospective validation of these tests remains elusive. An intriguing study suggests that ovarian cancer is associated with unique odors that can be detected.

A UK trial assessed screening for ovarian cancer (UK Collaborative Trial of Ovarian Cancer Screening [UKCTOCS]) using multimodality screening with ultrasound and CA-125 versus either ultrasound alone or no screening. Preliminary results suggested that multimodality screening is more effective at detecting early-stage cancer; however, after a median of 11 years of follow-up, a significant mortality reduction was not observed. Some feel that this UKCTOCS screening approach may be useful for women at high risk such as those with BRCA mutations. A large randomized trial in more than 78,000 women (the Prostate, Lung, Colorectal, and Ovarian [PLCO] Cancer Screening Trial) in the United States found that screening with transvaginal ultrasonography and CA-125 did not decrease mortality from ovarian cancer. In addition, false-positive results led to serious complications in some women (n = 163) in the PLCO trial. Another study—comparing 1) CA-125 alone; 2) ultrasound with CA-125; or 3) ultrasound alone—found that CA-125 did not increase the detection of cancer over ultrasound alone and that ultrasound was superior to CA-125 alone.
The Society of Gynecologic Oncology (SGO), the FDA, and the Mayo Clinic have stated that the OVA1 test should not be used as a screening tool to detect ovarian cancer. The OVA1 test uses 5 markers (including transthyretin, apolipoprotein A1, transferrin, beta-2 microglobulin, and CA-125) to assess who should undergo surgery by an experienced gynecologic oncologist and who can have surgery in the community. The Simple Rules algorithm attempts to preoperatively classify adnexal masses as benign or malignant and suggests that patients can be assessed for who should undergo surgery by an experienced gynecologic oncologist and who can have surgery in the community.87 Based on data documenting an increased survival, NCCN Guidelines Panel Members recommend that all patients should undergo surgery by an experienced gynecologic oncologist (category 1).64,88-91 NCCN Guidelines Panel Members believe that the OvaSure screening test should not be used to detect ovarian cancer.92-95 The OvaSure test uses 6 biomarkers, including leptin, prolactin, osteopontin, insulin-like growth factor II, macrophage inhibitory factor, and CA-125.96 Data show that several markers (including CA-125, HE4, mesothelin, B7-H4, decoy receptor 3 [DcR3], and spondin-2) do not increase early enough to be useful in detecting early-stage ovarian cancer.97-99

Staging
The NCCN Guidelines for Ovarian Cancer reflect the importance of stage and grade of disease on prognosis and treatment recommendations. Ovarian cancer is classified primarily as stages I to IV using the FIGO (International Federation of Gynecology and Obstetrics) and AJCC staging systems (see Table 1 and other staging tables in the NCCN Guidelines for Ovarian Cancer).100 Most patients present with stage III disease.101 Serous ovarian cancer is now often referred to as either low grade (most grade 1 serous tumors) or high grade (most grade 2 or 3 serous tumors).101-106 Pathologists may use histologic grades 1, 2, or 3 for endometrioid carcinomas, mucinous carcinomas, and stage IC tumors.102 Primary peritoneal adenocarcinoma and LCOH are also staged using the ovarian cancer staging system (see Table 1 in the NCCN Guidelines for Ovarian Cancer).100 Until January 1, 2017, Fallopian tube carcinomas will be staged using a separate FIGO and AJCC staging system (see Table 2 in the NCCN Guidelines for Ovarian Cancer and see next paragraph).100 The new AJCC/FIGO staging guidelines will combine staging for Fallopian tube carcinoma and ovarian cancer, and will be effective on January 1, 2017 (see Staging in the NCCN Guidelines for Ovarian Cancer). Except for select women with stage I, grade 1 tumors (in whom survival is greater than 95% after comprehensive laparotomy), patients in all other stages of ovarian cancer should be encouraged to enter clinical trials for both primary and recurrence therapy.

FIGO recently updated the staging for ovarian, Fallopian tube, and peritoneal cancer; their new staging system has been approved by the AJCC (see Staging in the NCCN Guidelines for Ovarian Cancer).101,103 For example, in the new staging guidelines, old stages IC, IIIA, and IV are now subdivided; the old stage IIC has been eliminated. These changes will be included in the next edition of the AJCC Cancer Staging Manual (8th edition), which will be published in mid-2016 and will be effective for all cancer cases recorded on or after January 1, 2017. The 2016 protocol from the College of American Pathologists (CAP) for ovarian cancer now includes Fallopian tube carcinomas.102-107

Caveat
By definition, the NCCN Guidelines cannot incorporate all possible clinical variations and are not intended to replace good clinical judgment or individualization of treatments. Exceptions to the rule were discussed among panel members during the process of developing these
guidelines. A 5% rule (omitting clinical scenarios that comprise less than 5% of all cases) was used to eliminate uncommon clinical occurrences or conditions from these guidelines.

Literature Search Criteria and Guidelines Update Methodology

Prior to the update of this version of the NCCN Guidelines for Ovarian Cancer, an electronic search of the PubMed database was performed to obtain key literature in ovarian cancer published between September 1, 2014 and October 1, 2015 using the following search term: ovarian cancer. The PubMed database was chosen because it remains the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature.108 The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase III; Clinical Trial, Phase IV; Guideline; Randomized Controlled Trial; Meta-Analysis; Systematic Reviews; and Validation Studies.

The PubMed search resulted in 139 citations and their potential relevance was examined. The data from key PubMed articles as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the panel have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). Recommendations for which high-level evidence is lacking are based on the panel’s review of lower-level evidence and expert opinion. The complete details of the Development and Update of the NCCN Guidelines are available on the NCCN webpage.

Epithelial Ovarian Cancer

Recommended Workup

The NCCN Guidelines for Epithelial Ovarian Cancer begin with the management of an undiagnosed pelvic mass or a prior diagnosis of a malignant epithelial ovarian tumor. Many patients with this diagnosis come to NCCN Member Institutions after having had previous surgery. The NCCN Guidelines recommend symptom management and best supportive care for all patients; patients should be referred for palliative care assessment if appropriate (see the NCCN Guidelines for Palliative Care, available at NCCN.org).

Undiagnosed Pelvic Mass

The primary workup should include an ultrasound and/or abdominal/pelvic CT/MRI scan (after an abdominal/pelvic examination) and appropriate laboratory studies for a patient with a suspicious pelvic mass (detected on abdominal/pelvic exam) and/or ascites, abdominal distention, and/or symptoms (ie, bloating, pelvic or abdominal pain, difficulty eating or feeling full quickly, urinary symptoms) without other obvious sources of malignancy (see Workup in the NCCN Guidelines for Epithelial Ovarian Cancer).62,109-116 Tumor markers (including CA-125, inhibin, alpha-fetoprotein [AFP], and beta-human chorionic gonadotropin [beta-HCG]) can be measured if clinically indicated to assess for LCOH and pregnancy (see Less Common Ovarian Histopathologies in this Discussion and the NCCN Guidelines for Ovarian Cancer).117-119 For example, AFP levels should be considered to assess for germ cell tumors in women younger than 35 years with a pelvic mass.117-119 Ultrasound is typically used for initial evaluation; however, CT is useful to assess for metastases.111 MRI may be useful for determining malignant potential if ultrasound is not reliable.115,116 CT/MRI imaging should be performed with contrast unless contraindicated. FDG-PET/CT scan may be useful for indeterminate lesions.120-122

Most ovarian cancers, including the LCOH, are diagnosed after pathologic analysis of a biopsy or surgical specimen, which may occur preoperatively, intraoperatively, or postoperatively. Both primary
peritoneal and Fallopian tube cancers are usually diagnosed postoperatively (if there is no major involvement of the ovary) or preoperatively (if there is a biopsy and the patient has already had a bilateral oophorectomy). Primary peritoneal and Fallopian tube cancers are treated in the same manner as epithelial ovarian cancer. If possible, fine-needle aspiration (FNA) should be avoided for diagnosis of ovarian cancer in patients with presumed early-stage disease to prevent rupturing the cyst and spilling malignant cells into the peritoneal cavity; however, FNA may be necessary in patients with bulky disease who are not surgical candidates. Other cancers that should be ruled out include bowel, uterine, and pancreatic cancers or lymphoma; benign ovarian and non-ovarian conditions also need to be ruled out (eg, serous cystadenoma). In addition, metastases to the ovaries need to be ruled out (see Mucinous Carcinomas in this Discussion).

It has been suggested that specific biomarkers (serum HE4 and CA-125) along with an algorithm (Risk of Ovarian Malignancy Algorithm [ROMA]) may be useful for determining whether a pelvic mass is malignant or benign. The FDA has approved the use of HE4 and CA-125 for estimating the risk for ovarian cancer in women with a pelvic mass. Currently, the NCCN Panel does not recommend the use of these biomarkers for determining the status of an undiagnosed pelvic mass. Although there is no direct evidence that chest x-ray or chest CT is necessary, panel members felt that it should be part of the overall evaluation of a patient before surgical staging if clinically indicated. Gastrointestinal tract evaluation should be done for mucinous histology to determine if patients have metastases to the ovary or primary mucinous carcinoma of the ovary (see Mucinous Carcinomas in this Discussion).

Prior Diagnosis of Malignancy
Patients are often referred to NCCN Member Institutions after having a previous diagnosis of ovarian cancer by surgery or tissue biopsy (cytopathology). Often they have had cytoreductive surgery and comprehensive staging procedures (ie, having met the standards for surgical staging of the Gynecologic Oncology Group [GOG]). However, in some instances, referral occurs after incomplete surgery and/or staging (eg, uterus and/or adnexa intact, omentum not removed, incomplete lymph node dissection, residual disease that is potentially resectable, surgical stage not completely documented). The components of surgical staging are listed in the algorithm (see Principles of Surgery in the NCCN Guidelines for Epithelial Ovarian Cancer). Identical workup procedures are recommended for patients having undiagnosed or diagnosed pelvic masses at the time of referral. Tissue diagnosis of metastatic sites can be considered.

Histologic Subtypes
Epithelial ovarian cancer has 4 main histologic subtypes, including serous, endometrioid, mucinous, and clear cell; however, most patients (about 70%) have serous histology. For the 2016 update, primary treatment recommendations for the LCOH subtypes—mucinous, clear cell, and grade 1 (low-grade) serous/endometrioid—may be different from the treatment recommendations for the high-grade serous/endometrioid subtypes (see the NCCN Guidelines for Epithelial Ovarian Cancer and the NCCN Guidelines for Less Common Ovarian Histopathologies). Recent molecular characterization of clear cell, mucinous, or grade 1 (low-grade) tumors suggests that mutations in these histologies are different from those in higher grade tumors. Ovarian cancer can be divided into Types 1 and 2 based on these molecular alterations. Data suggest that serous tumors can be categorized as either low grade (most grade 1 serous tumors) or high grade (most grade 2 or 3 serous tumors).
endometrioid tumors are difficult to distinguish from high-grade serous tumors. Grade 1 (low-grade) serous tumors are relatively resistant to standard chemotherapy regimens. Pathology review at NCCN Member Institutions is recommended for all patients. The CAP protocol is a useful tool for pathology reports, which was recently revised for 2016. For the 2016 update, the complete histologic classification from the WHO was added to the NCCN Guidelines (see WHO Histologic Classification in the NCCN Guidelines for Ovarian Cancer Histopathologies). The WHO pathology manual is also a useful resource.

Primary Treatment

Primary treatment for presumed ovarian cancer consists of appropriate surgical staging and cytoreduction, followed in most (but not all) patients by systemic chemotherapy. Initial surgery should be a comprehensive staging laparotomy, including a total abdominal hysterectomy (TAH) and BSO (see the Principles of Surgery in the NCCN Guidelines for Ovarian Cancer). Based on published improved outcomes, it is recommended (category 1) that a gynecologic oncologist perform the primary surgery. For a young patient who wishes to maintain fertility, a unilateral salpingo-oophorectomy (USO) (preserving the uterus and contralateral ovary) may be adequate for select unilateral stage I tumors (stage 1A and 1C, but not stage 1B) and/or low-risk ovarian tumors (ie, early-stage, grade 1 tumors; borderline tumors).

Comprehensive surgical staging should still be performed to rule out occult higher-stage disease, because data show that approximately 30% of patients undergoing complete staging surgery are upstaged. In select patients, minimally invasive procedures may be used for surgical staging. In early-stage disease, minimally invasive techniques to achieve the surgical goals may be considered in selected patients if performed by an experienced gynecologic oncologist. Surgeons tend to use an open laparotomy for patients with more widespread disease. Minimally invasive techniques may be considered for prophylactic salpingo-oophorectomy. For some of the LCOH, comprehensive staging may not be necessary for select patients, such as patients with borderline epithelial tumors (see the NCCN Guidelines for Less Common Ovarian Histopathologies). For the 2016 update, the surgical guidelines were extensively revised. For example, a new section was added on interval cytoreduction after neoadjuvant chemotherapy (see Principles of Surgery in the NCCN Guidelines for Ovarian Cancer). Two other sections were recently added to the Principles of Surgery: Operative Reports and a Risk-Reducing Salpingo-Oophorectomy (RRSO) Protocol (BRCA/HBOC syndrome) (see the NCCN Guidelines for Epithelial Ovarian Cancer). To summarize the new operative report, the surgeon should describe the following: 1) the extent of initial disease; 2) the amount of residual disease; and 3) whether a complete or incomplete resection (including a description of the lesions) was achieved.

Risk-Reducing Surgery

The RRSO protocol is recommended for patients at risk for HBOC and is described in detail in the algorithm (see Principles of Surgery in the NCCN Guidelines for Epithelial Ovarian Cancer, the Overview in this Discussion, and the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian, available at NCCN.org). This protocol recommends that the Fallopian tubes should be processed by sectioning and extensively examining the fimbriated end (SEE-Fim) of the tubes and then assessed to determine whether any evidence of cancer is present. The ovaries should also be carefully sectioned,
processed, and assessed. The 2016 CAP protocol describes the process for sectioning the Fallopian tubes and ovaries. Note that it is controversial whether a hysterectomy should also be done after RRSO. The prevention benefits of salpingectomy alone are not yet proven. If salpingectomy alone is considered, the Fallopian tube from the fimbria to its insertion into the uterus should be removed; the Fallopian tubes should also be carefully processed and assessed as previously described.

Cytoreductive Surgery

Cytoreductive surgery is the initial treatment recommendation for patients with clinical stage II, III, or IV disease (see Primary Treatment in the NCCN Guidelines for Epithelial Ovarian Cancer and the NCCN Guidelines for Less Common Histopathologies). Although cytoreductive surgery is the standard of care, this recommendation is based on retrospective data (and thus is not a category 1 recommendation). In general, the procedures outlined in the next paragraph should be part of the surgical management of patients with ovarian, Fallopian tube, or primary peritoneal cancer in an effort to fully stage patients and to achieve maximal cytoreduction to less than 1-cm residual disease or resection of all visible disease in appropriate circumstances. These procedures also apply to many of the LCOH. Surgical cytoreduction is optimal if the residual tumor nodules are less than 1 cm in maximum diameter or thickness; extensive resection of upper abdominal ovarian metastases is recommended for patients who can tolerate this surgery. In select patients, minimally invasive procedures may be used to assess whether cytoreductive surgery is feasible and to achieve cytoreduction. A maximal effort should be made to remove all gross disease, because the more complete the debulking the better the outcomes.

entering the abdomen, aspiration of ascites or peritoneal lavage should be performed for cytologic examinations. For obvious disease beyond the ovaries, cytologic assessment of ascites and/or lavage specimens will not alter stage or management. Hysterectomy and BSO should be performed. Although total hysterectomy is recommended for most patients, a supracervical hysterectomy is appropriate in some circumstances. An encapsulated mass should be removed intact, if possible. All involved omentum should be removed. Suspicious and/or enlarged nodes should be resected, if possible. Bilateral pelvic and para-aortic lymph node dissection is recommended for those patients with tumor nodules, outside the pelvis, of 2 cm or less (presumed stage IIIB) (see Principles of Surgery in the NCCN Guidelines for Epithelial Ovarian Cancer). For young patients who will abruptly enter menopause after surgery, various supportive care measures may be used to help decrease hot flashes and other symptoms.

Most patients have a hysterectomy with BSO, omentectomy, and lymphadenectomy of suspicious/enlarged nodes (see Principles of Surgery in the NCCN Guidelines for Epithelial Ovarian Cancer). Some surgeons classify debulking based on the number of procedures. In patients with advanced ovarian cancer who have had complete debulking, data indicate that overall survival is increased in those who receive systematic lymphadenectomy. Patients with low-volume residual disease after surgical cytoreduction for invasive epithelial ovarian or peritoneal cancer are potential candidates for intraperitoneal (IP) therapy. In these patients, consideration should be given to placement of an IP catheter with initial surgery. Procedures that may be considered for optimal surgical cytoreduction (in all stages) include: radical pelvic dissection, bowel resection and/or appendectomy, diaphragm or other peritoneal surface stripping, splenectomy, partial
hepatectomy, partial gastrectomy, or partial cystectomy and/or ureteroneocystostomy, cholecystectomy, and/or distal pancrecreatectomy.171,179,190

The surgical guidelines emphasize that an open laparotomy should be used for patients with suspected malignant ovarian cancer if the treatment plan involves surgical staging, primary debulking, interval debulking, or secondary cytoreduction (see \textit{Principles of Surgery} in the NCCN Guidelines for Epithelial Ovarian Cancer). The surgical guidelines also state that if patients cannot be optimally debulked using minimally invasive techniques, they should be converted to an open procedure. Neoadjuvant therapy can be considered if maximal cytoreduction cannot be achieved (see \textit{Neoadjuvant Chemotherapy} in this Discussion).191 The RRSO protocol is used for patients at risk for HBOC and is described in detail in the algorithm; this protocol recommends that the Fallopian tubes should be processed by SEE-Fim of the tubes and then assessed to determine whether any evidence of cancer is present.36,54,102,163 The ovaries should also be carefully sectioned, processed, and assessed.163

\textbf{Neoadjuvant Chemotherapy}

The therapeutic benefit of neoadjuvant chemotherapy followed by interval cytoreduction remains controversial (see next paragraph).173,192-198 Neoadjuvant chemotherapy may be considered (category 1) for patients with bulky stage III to IV disease who are not surgical candidates; however, a gynecologic oncologist should make this assessment before neoadjuvant chemotherapy is administered.199-205 Standard intravenous regimens described in the algorithm may be used for neoadjuvant chemotherapy (see \textit{Principles of Systemic Therapy: Primary Chemotherapy/Primary Adjuvant Therapy Regimens} in the NCCN Guidelines for Ovarian Cancer). Before initiation of chemotherapy, a tissue diagnosis should be obtained (by FNA, biopsy, or paracentesis) in this group of patients. If there are concerns about the histology, a core biopsy can be obtained; minimally invasive techniques may be used to obtain the biopsy.

\textit{Neoadjuvant therapy} refers to treatment (eg, drugs, radiation, other treatment) that is given to reduce the tumor burden before cancer surgery (see \textit{Principles of Systemic Therapy: Primary Chemotherapy/Primary Adjuvant Therapy Regimens} in the NCCN Guidelines for Epithelial Ovarian Cancer). A randomized phase III trial assessed neoadjuvant chemotherapy with interval debulking surgery versus upfront primary debulking surgery in patients with extensive-stage IIIC/IV ovarian, primary peritoneal, and Fallopian tube carcinoma (sponsored by the EORTC-GCG and the NCIC-CTG).200 Median overall survival was equivalent in these patients (29 vs. 30 months), but patients receiving neoadjuvant chemotherapy with interval debulking surgery had fewer complications.

A major criticism of this international trial is that reported progression-free survival (PFS) and overall survival were inferior to those reported more recently in randomized studies in the United States of patients undergoing primary debulking surgery followed by postoperative intravenous chemotherapy for advanced ovarian cancer (overall survival averages about 50 months).189,205 Although the median overall survival in the international trial is 20 months lower than that reported in U.S. trials using the customary sequence of therapeutic interventions (ie, primary debulking surgery followed by chemotherapy), this difference may have been a result of selection of patients at higher risk to the international trial (which did not include patients with stage IIIB or earlier-stage cancer). Also, primary or interval debulking surgery in the international trial may have been suboptimal (ie, patients may have had >1 cm of residual disease).173 A recent retrospective analysis of the EORTC-NCIC trial reported that patients with stage IV disease...
with bulky tumors had longer survival with neoadjuvant therapy, whereas those with stage IIIC disease and less bulky tumors had longer survival with upfront surgery.191 In the opinion of the subcommittee for the NCCN Guidelines for Ovarian Cancer, more data will be necessary prior to recommending neoadjuvant chemotherapy in patients with potentially resectable ovarian cancer, and upfront debulking surgery remains the treatment of choice in the United States.146,206 A recent large (586 patients) single-institution study in the United States reported that patients with advanced ovarian cancer who had standard debulking surgery had improved median overall survival (71.7 months [CI, 59.8–not reached]) when compared with those who had neoadjuvant chemotherapy (42.9 months [CI, 37.1–56.3]).207

\textbf{Interval Cytoreduction}

For the 2016 update, the algorithm now states that patients should be evaluated for potential interval debulking surgery before the fourth cycle of neoadjuvant chemotherapy (see \textit{Primary Treatment} in the NCCN Guidelines for Epithelial Ovarian Cancer). A new section was added to the surgical guidelines describing the procedures for interval cytoreduction in patients with invasive epithelial ovarian cancer who respond to or have stable disease after neoadjuvant chemotherapy (see \textit{Principles of Surgery} in the NCCN Guidelines for Ovarian Cancer). These surgical procedures are similar to those recommended for a primary cytoreduction. For example, every effort should be made to achieve maximal cytoreduction during an interval cytoreduction. Any peritoneal surface or adhesion suspicious for harboring metastasis should be selectively excised or biopsied. Removal of lymph nodes noted to have potential metastasis at the time of initial diagnosis should be considered, even if the nodes are not currently suspicious or enlarged.

\textbf{Incomplete Surgery and/or Staging}

For patients with incomplete previous surgery and/or staging, treatment recommendations are outlined in the algorithm (see \textit{Diagnosis by Previous Surgery} in the NCCN Guidelines for Epithelial Ovarian Cancer). For patients with stage II to IV disease who have residual disease that is considered unresectable, an evaluation for interval debulking surgery is recommended before the fourth cycle of chemotherapy. Interval debulking surgery after 3 cycles of chemotherapy is preferred; however, surgery may be performed after 4 to 6 cycles based on the clinical judgment of the gynecologic oncologist. Depending on the surgical results, postoperative chemotherapy may be recommended. Tumor reductive surgery is recommended for all patients with stage II to IV disease with suspected residual disease that is potentially resectable.

\textbf{Chemotherapy}

Most patients with epithelial ovarian cancer receive postoperative systemic chemotherapy, which is also referred to as adjuvant therapy (see \textit{Principles of Systemic Therapy} in the NCCN Guidelines for Epithelial Ovarian Cancer). Observation is recommended for patients with stage IA or IB, grade 1 endometrioid carcinomas, because survival is greater than 90% for this group with surgical treatment alone.208-210 If observation (without the addition of chemotherapy) is considered for stage IA or IB grade 2 tumors, a surgical staging procedure is recommended for all patients. Recommendations regarding initial primary chemotherapy/primary adjuvant therapy include intravenous with [or without] IP options (see \textit{Primary Chemotherapy/Primary Adjuvant Therapy Regimens} in the NCCN Guidelines for Epithelial Ovarian Cancer).211 All of the regimens (including the combined intravenous/IP chemotherapy) may be used for epithelial ovarian, primary peritoneal, and Fallopian tube cancers. The intravenous/IP chemotherapy regimen (IP chemotherapy) is recommended for patients
with stage III cancer with optimally debulked (<1 cm residual) disease based on randomized controlled trials (category 1). Women with stage II disease may also receive IP chemotherapy, although no randomized evidence for stage II has been published.

In women with stage III cancer, survival was increased by 16 months after IP therapy using cisplatin/paclitaxel when compared with standard intravenous therapy (65.6 vs. 49.7 months, \(P = .03 \)) in the GOG 172 trial. For patients who are not candidates for IP therapy (eg, those with poor performance status [PS]), other regimens may be recommended (see Primary Chemotherapy/Primary Adjuvant Therapy Regimens in the NCCN Guidelines for Epithelial Ovarian Cancer). Intravenous docetaxel plus carboplatin (category 1) or paclitaxel plus carboplatin (category 1) are options for alternative regimens. The docetaxel/carboplatin regimen may be considered for patients who are at high risk for neuropathy (eg, patients with diabetes).

Recommendations for the number of cycles of treatment vary with the stage of the disease. For patients with advanced-stage disease (stages II–IV), 6 cycles of chemotherapy are recommended, whereas 3 to 6 cycles are recommended for earlier-stage disease. Data suggest there is a potential survival advantage for 6 cycles of chemotherapy in select patients with serous cytology.

The recommended intravenous regimens accepted by a consensus of the NCCN Panel include: 1) paclitaxel, 175 mg/m² over 3-hour intravenous infusion, followed by carboplatin, dosed at an area under the curve (AUC) of 5 to 6 intravenous over 1 hour on day 1, given every 3 weeks for 6 cycles (category 1); 2) dose-dense paclitaxel, 80 mg/m² intravenous over 1 hour on days 1, 8, and 15 plus carboplatin AUC 5 to 6 intravenous over 1 hour on day 1, every 3 weeks for 6 cycles (category 1); 3) paclitaxel 60 mg/m² over 1 hour followed by carboplatin AUC 2 intravenous over 30 minutes, weekly for 18 weeks (category 1); and 4) docetaxel, 60 to 75 mg/m² 1-hour intravenous infusion followed by carboplatin, dosed at AUC of 5 to 6 intravenous over 1 hour on day 1, every 3 weeks for 6 cycles (category 1). These intravenous regimens may also be used for neoadjuvant chemotherapy (see Principles of Systemic Therapy in the NCCN Guidelines for Ovarian Cancer). The weekly carboplatin/paclitaxel regimen may be considered for elderly patients or those with poor PS based on the phase III MITO-7 trial. Note that carboplatin dosing may be revised based on changes in serum creatinine methodology. The AUC of 5 to 6 for carboplatin reflects contemporary treatment.

The recommended IP chemotherapy regimen is paclitaxel, 135 mg/m² continuous intravenous infusion over 3 or 24 hours on day 1; cisplatin, 75 to 100 mg/m² IP on day 2 after intravenous paclitaxel; paclitaxel, 60 mg/m² IP on day 8; repeat every 3 weeks for 6 cycles (category 1). The published randomized trial for this IP/intravenous regimen used intravenous continuous infusion of paclitaxel over 24 hours. A 3-hour infusion of paclitaxel has not been proven to be equivalent to a 24-hour infusion, although a 3-hour infusion has been reported to be more convenient, easier to tolerate, and less toxic. Note that these IP regimens include intravenous regimens so that systemic disease can also be treated. All of these regimens have different toxicity profiles. The docetaxel/carboplatin regimen is associated with increased risk for neutropenia; the intravenous paclitaxel/carboplatin regimen is associated with sensory peripheral neuropathy; and dose-dense paclitaxel is associated with increased anemia and decreased quality of life. Note that there are no agents to prevent chemotherapy-induced peripheral neuropathy.

The IP paclitaxel/cisplatin regimen is associated with leukopenia, infection, fatigue, renal toxicity, abdominal discomfort, and
neurotoxicity. In the initial studies, only 42% of women were able to complete all 6 treatment cycles (of the IP regimen) because of toxicity; however, with more experience, this percentage has improved in the major cancer centers. Although it has been suggested that a lower IP cisplatin dose of 75 mg/m² may help to decrease toxicity, preliminary data from GOG 252 suggest that the reduced-dose IP regimen should not be used.

Patients who are candidates for the IP cisplatin and IP/intravenous paclitaxel regimen should have normal renal function before starting, a medically appropriate PS based on the future toxicities of the IP/intravenous regimen, and no previous evidence of medical problems that could significantly worsen during chemotherapy (eg, preexisting neuropathy) (see Principles of Systemic Therapy in the NCCN Guidelines for Epithelial Ovarian Cancer). Reasons for discontinuing the IP regimen included catheter complications, nausea/vomiting/dehydration, and abdominal pain. Women unable to complete IP therapy should receive intravenous therapy. Techniques to decrease catheter complications include catheter choice and timing of insertion. Expert nursing care may help to decrease complications. Giving intravenous hydration before and after IP chemotherapy is a useful strategy to prevent renal toxicity. After chemotherapy, patients often require intravenous fluids (5–7 days) in the outpatient setting to prevent or help treat dehydration. Whether to use IP or intravenous chemotherapy remains controversial.

Patients with poor PS, comorbidities, stage IV disease, or advanced age (>65 years) may not tolerate the IP regimen or the other combination intravenous regimens described in the NCCN Guidelines. Single-agent platinum agents, such as cisplatin or carboplatin, may be more appropriate for these patients. A recent phase III randomized trial (MITO-7) assessed carboplatin/paclitaxel every week compared with standard therapy given every 3 weeks (ie, intravenous carboplatin/paclitaxel) in women with advanced epithelial ovarian cancer. Median PFS was similar between the 2 regimens. The weekly carboplatin/paclitaxel regimen was associated with fewer side effects and yielded a better quality of life. For example, fewer patients receiving the weekly regimen had grade 3 to 4 neutropenia (167 [42%] of 399 patients vs. 200 [50%] of 400 patients). Therefore, this weekly carboplatin/paclitaxel regimen may be considered for elderly patients or those with poor PS based on the phase III MITO-7 trial. Algorithms are available for predicting chemotherapy toxicity (see the NCCN Guidelines for Senior Adult Oncology, available at NCCN.org).

The IP regimen published by Armstrong et al has, however, documented the longest median survival (65.6 months) that has been described to date in women with optimally debulked stage III cancer. A recent study reported overall survival of 110 months in patients with stage III ovarian cancer and no residual disease who received the IP regimen. Another recent study showed that survival improves with each cycle of IP chemotherapy. Patients with primary peritoneal cancer, Fallopian tube cancer, or MMMT can also be considered for IP chemotherapy. If the NCCN Guidelines state that treatment as per epithelial ovarian cancer is an option, then IP chemotherapy can be considered an option for other LCOH (see the NCCN Guidelines for Less Common Histopathologies). All women should be counseled about the clinical benefit associated with combined intravenous and IP chemotherapy administration before undergoing surgery for epithelial ovarian cancer, Fallopian tube cancer, primary peritoneal cancer, or MMMT. A recent study reported that women with aberrant BRCA1 expression had increased survival when treated with IP cisplatin/paclitaxel.

Dose-dense weekly paclitaxel with carboplatin has been shown to increase both PFS (28 vs. 17 months, \(P = .0037\)) and overall survival.
when compared with standard therapy given every 3 weeks (ie, intravenous carboplatin/paclitaxel) in women with advanced epithelial ovarian cancer.220,241 In the dose-dense group, median overall survival was 100.5 months versus 62.2 months in the conventional treatment group (HR 0.79; 95% CI, 0.63–0.99; \(P = .039\)). However, the dose-dense regimen is more toxic, and patients discontinued dose-dense paclitaxel therapy more often than did those receiving standard therapy. A recent study reported that dose-dense weekly paclitaxel did not prolong PFS.242 Future studies will compare the effect of weekly paclitaxel on the overall survival benefit with that of using IP chemotherapy.243

Anti-Angiogenesis Agents

A phase III randomized trial (GOG 0218) assessed bevacizumab combined with carboplatin/paclitaxel in the upfront setting compared to carboplatin/paclitaxel alone. The median PFS was significantly increased (14.1 vs. 10.3 months, \(P < .001\)) in patients receiving prolonged bevacizumab (upfront and as maintenance therapy) when compared with chemotherapy alone.244,245 However, PFS was not significantly increased in patients who did not receive maintenance bevacizumab (upfront with placebo maintenance) versus chemotherapy alone (ie, bevacizumab/carboplatin/paclitaxel vs. carboplatin/paclitaxel). Quality of life was not improved in GOG 0218.246 A recent analysis of the data from GOG 0218 suggests that upfront therapy with carboplatin/paclitaxel/bevacizumab may be beneficial in patients with ascites.247 Women with ascites who received the bevacizumab regimen had significantly improved PFS (adjusted hazard ratio [AHR] 0.71; 95% CI, 0.62–0.81; \(P < .001\)) and overall survival (AHR 0.82; 95% CI, 0.70–0.96; \(P = .014\)) when compared with those only receiving chemotherapy.

Another phase III randomized trial (ICON7) also assessed bevacizumab/carboplatin/paclitaxel in the upfront setting. The trial design of ICON7 differs from GOG 0218 (see next paragraph).248 Although the PFS data from ICON7 confirm the findings of GOG 0218, the benefits appear to be modest (2.4-month increase in PFS).246 Recent data for ICON7 suggest that overall survival was increased in the subset of patients with a poor prognosis, although overall survival was not increased in whole study population.249 In women with a poor prognosis who received bevacizumab plus chemotherapy, overall survival was increased when compared with those receiving chemotherapy alone (restricted mean survival time 39.3 months [37.0–41.7] with bevacizumab vs. 34.5 months [95% CI, 32.0–37.0] with chemotherapy alone; \(P = .03\)).

For the 2016 update, panel members revised the recommendation to category 2B (previously it was category 3) for the addition of bevacizumab to upfront chemotherapy with carboplatin/paclitaxel followed by bevacizumab as maintenance therapy (see PrimaryChemotherapy/Primary Adjuvant Therapy Regimens: Ovarian, Fallopian Tube, and Primary Peritoneal Cancer in the NCCN Guidelines for Epithelial Ovarian Cancer).240,250 Some panel members believe that bevacizumab should not be added to upfront chemotherapy in patients with ovarian cancer, because data from these 2 phase III randomized trials (ie, GOG 0218, ICON7) have not shown a statistically significant increase in overall survival in the whole study population and/or improved quality of life.245,246,248,250-253 Note that a category 2B recommendation indicates that more (\(\geq 50\%\) and <85\%) panel members agree that the intervention is appropriate.

The NCCN Panel recommends (category 2B) that if bevacizumab is used with upfront chemotherapy followed by maintenance therapy, then either the GOG 0218 or ICON7 regimens should be used (see Primary...
Chemotherapy/Primary Adjuvant Therapy Regimens: Ovarian, Fallopian Tube, and Primary Peritoneal Cancer in the NCCN Guidelines for Epithelial Ovarian Cancer). \(^{245,248}\) The only GOG 0218 regimen that is recommended (category 2B) is the prolonged bevacizumab regimen (upfront with carboplatin/paclitaxel followed by maintenance bevacizumab). \(^{245}\) The NCCN Panel encourages participation in ongoing clinical trials that are further investigating the role of anti-angiogenesis agents in the treatment of ovarian cancer, both in the upfront and recurrence settings. \(^{254}\)

Number of Chemotherapy Cycles and Agents

Panel members had an extensive discussion about the number of cycles of chemotherapy that should be recommended for patients with advanced-stage disease. There is no evidence confirming that more than 6 cycles of combination chemotherapy are required for initial chemotherapy. \(^{255}\) Patients with stage II to IV disease may receive 3 to 6 cycles of chemotherapy followed by completion surgery and postoperative chemotherapy (see **Primary Treatment** in the NCCN Guidelines for Epithelial Ovarian Cancer). \(^{196}\)

The role of maintenance (or postremission) therapy in patients who achieve a complete clinical remission after 6 cycles of chemotherapy is an option based on the results from GOG 178. This trial randomly assigned patients to 3 versus 12 months of further paclitaxel (135–175 mg/m² every 4 weeks for 12 cycles) after initial chemotherapy. \(^{256}\) The published study treated patients at 175 mg/m²; the plan was to decrease the dose to 135 mg/m², but the protocol closed before any patients were treated at the lower dose. The results of this trial suggest that patients receiving 12 months of therapy sustained a PFS advantage (28 vs. 21 months). Postremission paclitaxel chemotherapy is a category 2B recommendation, because it is associated with peripheral neuropathy and because it only increased PFS but not overall survival. \(^{257}\) Another study suggests that postremission paclitaxel is not beneficial. \(^{258}\) For the 2016 update, the panel revised the recommendation for postremission paclitaxel to category 2B (from category 3).

The NCCN Panel recommends adding pazopanib (category 2B) as postremission therapy for patients with stages II to IV epithelial ovarian cancer, Fallopian tube cancer, or primary peritoneal cancer who have had complete clinical remission after first-line therapy. This recommendation is based on a recent phase III randomized trial showing an increase in PFS (17.9 vs. 12.3 months) in patients treated with pazopanib compared with placebo. \(^{259}\) However, pazopanib is a category 2B recommendation for maintenance therapy because the FDA has not approved this indication, there was no increase in overall survival data, and patients had increased toxicity with pazopanib such as grade 3 or 4 hypertension. Bevacizumab may be continued after primary systemic therapy if an upfront chemotherapy/bevacizumab regimen was used, but there are no data to support introducing bevacizumab as maintenance therapy if other initial primary regimens were used.

Drug Reactions

Virtually all drugs have the potential to cause adverse reactions (infusion reactions or allergies), either during or after the infusion. \(^{260-264}\) Drugs used in gynecologic oncology treatment that more commonly cause adverse reactions include carboplatin, cisplatin, docetaxel, liposomal doxorubicin, oxaliplatin, and paclitaxel. Drug reactions can occur with either intravenous or IP administration of these drugs. \(^{265}\) Most of these drug reactions are mild infusion reactions (ie, skin reactions, cardiovascular reactions, respiratory or throat tightness), but more severe allergic reactions (ie, life-threatening anaphylaxis) can occur. \(^{266,267}\) Infusion reactions are more common with paclitaxel, \(^{268}\) but
mild reactions can also occur with liposomal doxorubicin.269 Allergic reactions (ie, true drug allergies) are more common with platinum agents (ie, carboplatin, cisplatin, oxaliplatin).268,270

Algorithms are provided for management of mild, severe, and life-threatening reactions (see Management of Drug Reactions in the NCCN Guidelines for Ovarian Cancer).271 These drug reaction algorithms are also useful for patients with other gynecologic cancers (eg, cervical and uterine cancers) who are receiving carboplatin, cisplatin, docetaxel, liposomal doxorubicin, oxaliplatin, or paclitaxel. Typically, the infusion should be stopped for patients having a reaction; further management is provided in the algorithms. Standard resuscitation procedures (ie, Advanced Cardiovascular Life Support [ACLS]) should be followed for patients with acute cardiopulmonary arrest.272-275

For patients with allergic reactions, various desensitization protocols have been published.261,264,276,277 To maximize safety, patients may be desensitized in the intensive care unit.264,277 Almost all patients can be desensitized (about 90%).264 For severe life-threatening reactions, the implicated agent should not be used again unless under the supervision and guidance of an allergist or specialist with expertise in desensitization. If a mild allergic reaction is suspected, and it is appropriate to administer the drug again, a desensitization regimen should be used even if the symptoms have resolved.262 Patients must be desensitized with each infusion if they previously had a drug reaction.278-280 Data suggest that an extended infusion schedule and use of premedication may decrease the number of hypersensitivity reactions to carboplatin.281 Skin testing is associated with false-negative results.282,283

Radiation Therapy
Whole abdominal radiation therapy is rarely used for epithelial ovarian, primary peritoneal, and Fallopian tube cancers in NCCN Member Institutions. It is not included as a treatment recommendation in the NCCN Guidelines for Ovarian Cancer. Palliative localized RT is an option for symptom control in patients with recurrent disease (see Principles of Systemic Therapy: Acceptable Recurrence Therapies (Ovarian, Fallopian Tube, and Primary Peritoneal Cancer) in the NCCN Guidelines for Epithelial Ovarian Cancer).284-288 Patients who receive radiation are prone to vaginal stenosis, which can impair sexual function.289 Women can use vaginal dilators to prevent or treat vaginal stenosis. Dilator use can start 2 to 4 weeks after RT is completed and can be done indefinitely.290

Recommendations After Primary Treatment
After initial treatment (eg, surgery followed by 6 cycles of chemotherapy), patients should undergo a clinical re-evaluation. Observation with follow-up is recommended for patients who have no evidence of progression of cancer (ie, complete clinical remission) after initial treatment (see Follow-Up Recommendations in this Discussion) (also see Monitoring/Follow-up in the NCCN Guidelines for Epithelial Ovarian Cancer); other options are discussed below. Patients with partial remission or progression during initial treatment should be treated with second-line approaches (see Recurrent Disease in this Discussion) (see Therapy for Persistent Disease or Recurrence in the NCCN Guidelines for Epithelial Ovarian Cancer).291,292 The NCCN Guidelines recommend symptom management and best supportive care for all patients; patients should be referred for palliative care assessment if appropriate (see the NCCN Guidelines for Palliative Care, available at NCCN.org). The NCCN Guidelines also recommend that all patients with ovarian cancer, Fallopian tube cancer, or primary...
peritoneal cancer be referred for genetic risk evaluation (see the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian and the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal, available at NCCN.org).

Primary treatment should not be delayed for genetic counseling.

Options for maintenance treatment—for the management of patients with advanced-stage (stages II–IV) disease who are in complete clinical remission after their initial therapeutic regimen—include observation alone, a clinical trial, or postremission systemic therapy (category 2B), preferably in a controlled clinical trial (see Secondary Adjuvant Therapy in the NCCN Guidelines for Epithelial Ovarian Cancer). The NCCN Panel recommends postremission pazopanib (category 2B) for management of stage II to IV disease (see Number of Chemotherapy Cycles and Agents in this Discussion).

As previously described, postremission pazopanib increases PFS when administered following initial chemotherapy. If used, the recommended paclitaxel regimen is 135 to 175 mg/m² every 4 weeks for 12 cycles. Use of maintenance bevacizumab (category 2B) is discussed in an earlier section and has been shown to modestly increase PFS when administered following initial chemotherapy that included bevacizumab (see Anti-Angiogenesis Agents in this Discussion). Note that complete clinical remission is defined as no objective evidence of disease (ie, negative physical examination, negative CA-125 levels, negative CT with <1 cm lymph nodes).

Follow-up Recommendations

Recurrent disease may be identified clinically (eg, pelvic pain, weight loss), biochemically (ie, elevated CA-125 levels), and/or with imaging following initial treatment. After the completion of primary surgery and chemotherapy in patients with all stages of ovarian cancer (or Fallopian tube cancer or primary peritoneal cancer) who have had a complete response, the standard recommendation is observation with follow-up to monitor for recurrent disease. Recommendations for monitoring are described in the algorithm (see Monitoring/Follow-up in the NCCN Guidelines for Epithelial Ovarian Cancer). Chest/abdominal/pelvic CT, MRI, FDG-PET/CT, FDG-PET scans (category 2B for PET alone), and chest x-ray may be ordered if clinically indicated.

Patients should be educated about the signs and symptoms suggestive of recurrence (eg, pelvic pain, bloating, early satiety, obstruction, weight loss, fatigue). Patients who have had fertility-sparing surgery should be monitored by ultrasound examinations if indicated; completion surgery should be considered (category 2B) after they finish childbearing.

If the CA-125 level was initially elevated, the measurement of a CA-125 level or other tumor markers is recommended. A multi-institutional European trial assessed the use of CA-125 for monitoring for ovarian cancer recurrence after primary therapy. The data suggest that treating recurrences early (based on detectable CA-125 levels in patients who are asymptomatic) is not associated with an increase in survival and is associated with a decrease in quality of life.

Recommendations from the SGO state that use of CA-125 levels for surveillance is optional. The NCCN Panel feels that the European trial has limitations and patients should discuss the pros and cons of CA-125 monitoring with their physicians. In addition, patients seem reluctant to give up monitoring. Others have discussed this study in greater detail.

Management of an Increasing CA-125 Level

The management of patients in a clinical complete remission is somewhat controversial; this includes patients who are found to have an increasing CA-125 level (during routine monitoring and follow-up) but no signs or symptoms of recurrent disease (eg, pelvic pain, bloating,
obstruction), following an evaluation including a negative pelvic examination and negative chest/abdominal/pelvic CT scans. Patients who have never received chemotherapy (ie, naïve to chemotherapy) should be managed using recommendations for newly diagnosed patients, should undergo clinically appropriate imaging studies and surgical debulking, and should be treated as previously described (see Primary Treatment in the NCCN Guidelines for Epithelial Ovarian Cancer).

Recurrence therapy refers to drugs, radiation, or other treatment that is given to decrease tumor burden, control symptoms, or increase length and/or quality of life for patients with recurrent disease. After the documentation of an increased CA-125 level (ie, biochemical relapse), the median time for a clinical relapse is 2 to 6 months. However, data suggest that immediate treatment for biochemical relapse is not beneficial; therefore, immediate treatment is a category 2B recommendation in the NCCN Guidelines. After biochemical relapse, recommended options include enrollment in a clinical trial, delaying treatment (ie, observation) until clinical symptoms arise, and/or best supportive care (see Recurrent Disease in the NCCN Guidelines for Epithelial Ovarian Cancer). Because tamoxifen and other hormonally active agents have a defined response rate for patients with recurrent disease who have progressed after platinum-based chemotherapy, these agents are frequently administered to patients who have only a rising CA-125 level as evidence of tumor progression. Tamoxifen, other hormonal agents, or other recurrence therapy are acceptable recommendations for this clinical situation (category 2B for all).

Recurrent Disease
The prognosis is poor either 1) for patients who progress after 2 consecutive chemotherapy regimens without ever sustaining a clinical benefit (refractory) or 2) for those whose disease recurs in less than 6 months (platinum resistant). Note that progression is typically defined using RECIST (Response Evaluation Criteria in Solid Tumor) criteria. Panel members emphasized the importance of clinical trials to identify agents active in this group of patients. Because their disease was resistant to the primary induction regimen, retreatment with a platinum compound or paclitaxel is not generally recommended. Although panel members do not recommend retreatment with platinum agents, they recognize that altering the schedule of paclitaxel may produce secondary responses. Before any drug is given in the recurrent setting, the clinician should be familiar with the drug’s metabolism and should make certain that the patient is an appropriate candidate for the drug (eg, that the patient has adequate renal or hepatic function). Clinical judgment must be used when selecting postoperative chemotherapy.

Options for patients with platinum-resistant disease or for those with stages II to IV disease who have a partial response include clinical trial, recurrence therapy (see Acceptable Recurrence Therapies in the NCCN Guidelines for Epithelial Ovarian Cancer), and/or best supportive care (see NCCN Guidelines for Palliative Care, available at NCCN.org). Although palliative care is appropriate at many stages during the disease course, an assessment for palliative care is especially appropriate for women with platinum-resistant disease who may be receiving continuous systemic therapy. Patients who relapse 6 months or more after initial chemotherapy are termed platinum sensitive. Combination platinum-based chemotherapy for a total of 6 cycles is preferred for first recurrence (category 1) in patients with platinum-sensitive disease (see Therapy for Persistent Disease or Recurrence in the NCCN Guidelines for Epithelial Ovarian Cancer); other recurrence therapies are also an option. Possible regimens
Patients with ovarian cancer will often be retreated with multiple courses of recurrence therapy. Caution should be used in patients who receive multiple sequential courses of chemotherapy, because they may experience excessive toxicity and may not be able to tolerate doses used for first-line recurrence therapy; thus, clinical judgment should be used when selecting doses (see Principles of Systemic Therapy in the NCCN Guidelines for Epithelial Ovarian Cancer). Potential, ancillary, palliative, surgical, and/or supportive care procedures for selected patients are summarized in the algorithm (see Principles of Surgery in the NCCN Guidelines for Epithelial Ovarian Cancer).

Secondary cytoreductive surgery can be considered for patients who recur (ie, radiographic and/or clinical relapse) after a long disease-free interval (6 months or more). A meta-analysis suggests that survival increases for patients with recurrent disease who have complete cytoreduction. The duration of the disease-free interval has not been established, although panel members agreed that it should be at least 6 months before surgery is considered.

Acceptable Recurrence Modalities

The NCCN Panel felt that no single therapeutic agent should be currently recommended as the treatment of choice for recurrent ovarian carcinoma. However, some agents are preferred based on expert opinion primarily for reasons of decreased toxicity and/or marginally increased effectiveness (see Principles of Systemic Therapy: Acceptable Recurrence Therapies in the NCCN Guidelines for Epithelial Ovarian Cancer). A meta-analysis of chemotherapy for recurrent ovarian cancer was published in 2007. Recurrence therapy refers to therapy (eg, drugs, radiation, or other treatment) that is given for recurrent cancer to control symptoms and increase length or quality of life for clinical, biochemical, or radiographic evidence of recurrent cancer following initial treatment.

The consensus of the NCCN Panel for the treatment of recurrent disease is summarized in the algorithm (see Principles of Systemic Therapy: Acceptable Recurrence Therapies in the NCCN Guidelines for Epithelial Ovarian Cancer). Platinum-based combination chemotherapy is recommended (category 1) for a total of 6 cycles for platinum-sensitive recurrence (see Therapy for Persistent Disease or Recurrence in the NCCN Guidelines for Epithelial Ovarian Cancer). Preferred combinations for platinum-sensitive recurrent disease include carboplatin/paclitaxel (category 1), carboplatin/liposomal doxorubicin (category 1), carboplatin/weekly paclitaxel, carboplatin/docetaxel, carboplatin/gemcitabine (which has been shown to improve PFS), or cisplatin/gemcitabine. The NCCN Panel recently revised the recommendation for carboplatin/liposomal doxorubicin to category 1 (from category 2A) based on recent data and uniform consensus from the panel. Carboplatin/liposomal doxorubicin is equivalent to carboplatin/paclitaxel but both have different toxicity profiles. Carboplatin/liposomal doxorubicin is easier to tolerate; women tend to discontinue therapy with carboplatin/paclitaxel more often than they do with carboplatin/liposomal doxorubicin. Other combination regimens, including those with bevacizumab, are discussed in the following paragraphs.

For platinum-resistant disease, the preferred single agent is a non-platinum–based agent (ie, docetaxel, oral etoposide, gemcitabine, liposomal doxorubicin, weekly paclitaxel with or without pazopanib, topotecan); sequential therapy using single agents is typically used. The response rate of the following agents appears to be similar: topotecan, 20%; gemcitabine, 19%; liposomal doxorubicin, 26%; and oral etoposide, 27%. In patients with
platinum-resistant disease, the response rate for docetaxel is 22% and for weekly paclitaxel is 21%. For platinum-sensitive disease in patients who cannot tolerate combination therapy, the preferred single agent is carboplatin or cisplatin. Recent reports suggest that weekly topotecan is less toxic than the daily regimen. Palliative chemotherapy has been shown to reduce symptoms in patients with platinum-resistant disease. A recent phase 2 trial (MITO-11) assessed weekly paclitaxel with (or without) pazopanib in patients with platinum-resistant or refractory advanced ovarian cancer. The data show that PFS was increased in the paclitaxel/pazopanib arm when compared with paclitaxel alone (median 6.35 months [95% CI, 5.36–11.02] vs. 3.49 months [2.01–5.66]; hazard ratio, 0.42 [95% CI, 0.25–0.69]; \(P = .0002 \)).

Other potentially active agents include altretamine, capcitabine, cyclophosphamide, doxorubicin, ifosfamide, irinotecan, melphalan, oxaliplatin, paclitaxel, nanoparticle albumin-bound paclitaxel (ie, nab-paclitaxel), pemetrexed, and vinorelbine (see Principles of Systemic Therapy: Acceptable Recurrence Therapies in the NCCN Guidelines for Epithelial Ovarian Cancer). Nab-paclitaxel has an overall response rate of 64%. Vinorelbine has a response rate of 20%. Altretamine has a 14% response rate and ifosfamide has a 12% response rate, although less information is available regarding their use in patients with paclitaxel-refractory disease. In women with platinum-resistant disease, the response rate for pemetrexed is 21%. Single-agent bevacizumab is also active (21%) in patients with both platinum-sensitive and platinum-resistant disease, although it may cause hypertension, arterial thrombosis, or intestinal perforation.

Several phase III randomized trials have recently assessed combination therapy with bevacizumab for recurrent ovarian cancer (ie, AURELIA, OCEANS). The AURELIA trial assessed bevacizumab combined with chemotherapy—either liposomal doxorubicin, weekly paclitaxel, or topotecan—versus chemotherapy alone in patients with advanced platinum-resistant ovarian cancer. For patients receiving bevacizumab/chemotherapy, the primary endpoint of PFS was 6.7 months versus 3.4 months with chemotherapy alone. The median overall survival was 16.6 months for the bevacizumab/chemotherapy arm versus 13.3 months for chemotherapy alone; the overall survival hazard ratio was 0.85 (95% CI, 0.66–1.08; \(P < .174 \)). Hypertension and proteinuria (\(\geq \) grade 2) were more common with bevacizumab. Gastrointestinal perforation occurred in 2.2% of patients on the bevacizumab arm. Based on the results of the AURELIA trial, the NCCN Panel now recommends the following combination regimens for patients with platinum-resistant recurrent ovarian cancer: weekly paclitaxel/bevacizumab, liposomal doxorubicin/bevacizumab, and topotecan/bevacizumab. These bevacizumab combination regimens are contraindicated in patients at increased risk of gastrointestinal perforation or those who have previously received bevacizumab. Previously, only single-agent therapy was recommended for platinum-resistant disease.

A phase III randomized trial (OCEANS) assessed carboplatin/gemcitabine with and without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer who had not previously received bevacizumab. In the OCEANS trial, PFS was increased in patients receiving the chemotherapy/bevacizumab arm when compared with chemotherapy alone (12.4 vs. 8.4 months, \(P < .0001 \)). The final survival analysis did not show an increase in overall survival with the chemotherapy/bevacizumab arm when compared with chemotherapy alone (bevacizumab/chemotherapy: 33.6 months; chemotherapy alone: 32.9 months; hazard ratio, 0.95; \(P = .65 \)). Combination therapy with
bevacizumab is a category 2B recommendation for platinum-sensitive disease, because there is less consensus among the NCCN Panel (>50% but < 85%) that this intervention is appropriate. Panel members feel other combination regimens may be more preferred for platinum-sensitive disease than regimens with bevacizumab. In addition, the carboplatin/gemcitabine/bevacizumab regimen is only recommended in patients who have not previously received bevacizumab. Based on phase II trials, panel members feel that bevacizumab alone is useful in patients who have recurrent disease (especially those with ascites), which is reflected in the category 2A recommendation for single-agent bevacizumab for women with either platinum-sensitive or platinum-resistant disease.

Single-agent paclitaxel, nab-paclitaxel, and oxaliplatin are listed as other potentially active agents that can be used in appropriate patients. Capecitabine has activity if their disease was resistant to platinum and taxanes. Other alkylating agents, including cyclophosphamide and melphalan, can also be used. In addition, hormonal therapy with tamoxifen or other agents including aromatase inhibitors (such as exemestane, anastrozole, and letrozole), leuprolide acetate, or megestrol acetate continues to be a viable therapeutic option for patients who cannot tolerate or have not responded to cytotoxic regimens.

Recent data suggest that olaparib (AZD2281), which is a PARP (poly ADP-ribose polymerase) inhibitor, is active in select patients (those with BRCA1 and BRCA2 mutations have higher response rates than those who are BRCA negative) with chemotherapy-refractory ovarian cancer, especially those with platinum-sensitive disease. If disease is resistant or refractory to platinum, then a lower response rate to olaparib is observed. A recent trial assessed olaparib in women with recurrent advanced ovarian cancer; the overall response rate was 34% (complete response, 2%; and partial response, 32%). The FDA approved olaparib for patients with advanced ovarian cancer who have received treatment with 3 or more lines of chemotherapy and who have a germline BRCA mutation. The NCCN Panel recommends single-agent olaparib as recurrence therapy for patients with advanced ovarian cancer who have received 3 or more lines of chemotherapy and who have a germline BRCA mutation (detected using an FDA-approved test or other validated test performed in a CLIA-approved facility) based on this trial and the FDA approval. However, the NCCN Panel decided not to recommend olaparib as maintenance therapy for patients with platinum-sensitive disease, because panel members feel that current data are not sufficient for recommending olaparib in this setting.

Studies are ongoing for olaparib in other rare populations such as patients with HR deficiency. The NCCN Panel also recommends (category 2B) single-agent pazopanib as a potentially active targeted therapy in patients who had a complete response to initial therapy. In a phase 2 trial in 36 patients, the overall response rate was 18% with grade 3 elevations in ALT and AST in a few patients (8%).

Chemotherapy/resistance assays and/or other biomarker assays are being used in some NCCN Member Institutions to aid in selecting chemotherapy in situations where there are multiple equivalent chemotherapy options available; however, the current level of evidence (category 3) is not sufficient to supplant standard-of-care chemotherapy. Thus, the NCCN Panel felt that in vitro chemosensitivity testing to choose a chemotherapy regimen for recurrent disease situations should not be recommended (category 3), owing to the lack of demonstrable efficacy for such an approach. ASCO also does not recommend use of chemotherapy sensitivity and resistance assays, unless in a clinical trial setting. Note that a
category 3 recommendation reflects strong disagreement about the intervention; at least 3 different NCCN Member Institutions must agree to include the category 3 intervention in the guideline; otherwise it is deleted.

However, regardless of which regimen is selected initially, reevaluation should follow after 2 to 4 cycles of chemotherapy (depending on the agent) to determine if patients benefited from chemotherapy. Patients who primarily progress on 2 consecutive chemotherapy regimens without evidence of clinical benefit may not benefit from additional therapy.399 Decisions to offer supportive care, additional therapy, or clinical trials should be made on a highly individual basis. Localized RT can also provide effective palliation when radiation ports are tailored to specific symptomatic disease sites.284,285

Less Common Ovarian Histopathologies
For the 2016 update, the NCCN Panel extensively revised the section on LCOH (see the NCCN Guidelines for Less Common Ovarian Histopathologies). New algorithms for clear cell carcinoma, mucinous carcinoma, and grade 1 (low-grade) serous/endometrioid epithelial carcinoma were added to the NCCN Guidelines. Previously, these rare histologies had been included in the algorithm for epithelial ovarian cancer. Panel members believe there is value in identifying potential pathways for these rare histologies because of emerging therapeutics for specific histologies. However, there are limited data for these rare histologies because of their infrequency and it will be difficult to acquire prospective data. Therefore, individualized treatment may be the best treatment for patients with these rare histologies.

The complete histologic classification for ovarian cancer from the WHO was added to the NCCN Guidelines for 2016, which includes the different types of LCOH (see WHO Histologic Classification in the NCCN Guidelines for Ovarian Cancer Histopathologies).1 Other LCOH include: carcinomas (MMMTs), borderline epithelial tumors, malignant sex cord-stromal tumors, and malignant germ cell tumors; these rare histologies had previously been included in the LCOH guidelines and were also revised for 2016.

Recommended Workup
Patients may obtain consultation at an NCCN Member Institution for recommendations and treatment of an undiagnosed pelvic mass, or for management of a previously biopsied malignant ovarian tumor. Many such patients come to NCCN Member Institutions after having had previous surgery at other institutions. Patients having a histologically undiagnosed pelvic mass should undergo evaluation and staging as described in the algorithm (see Workup in the NCCN Guidelines for Epithelial Ovarian Cancer). Therefore, the workup for LCOH is the same as for other types of ovarian cancer except that tumor markers are measured and other testing is done to determine the specific histopathology (see Workup in the NCCN Guidelines for Epithelial Ovarian Cancer). Tumor markers may include CA-125, inhibin, beta-hCG, alfa-fetoprotein, and carcinoembryonic antigen (CEA). Women younger than 35 years with a pelvic mass should have AFP levels measured to assess for germ cell tumors and to rule out pregnancy.117,119 A gastrointestinal tract evaluation is recommended for mucinous histology to determine whether an occult gastrointestinal primary has metastasized to the ovaries.134 An intraoperative frozen section evaluation is recommended for women who would like to maintain their fertility (see next section).
Surgery

In contrast to high-grade serous epithelial ovarian cancer or MMMTs, many patients with other LCOH present at an early stage. Some of the tumors may be confined to one ovary. Thus, some of these patients are candidates for fertility-sparing surgery, which may be done laparoscopically (see Principles of Surgery in the NCCN Guidelines for Epithelial Ovarian Cancer). Fertility-sparing surgery may be performed (if technically feasible) if the intraoperative frozen section results are positive for malignant germ cell tumors, borderline epithelial tumors, clinical stage I epithelial ovarian tumors, or clinical stage I sex cord-stromal tumors. Patients who do not desire fertility preservation; those who have a clinical stage II, III, or IV epithelial ovarian cancer; those with clinical stage II, III, or IV sex cord-stromal tumor; or those with MMMT should undergo comprehensive surgical staging as per the ovarian cancer guidelines (see Principles of Surgery in the NCCN Guidelines for Ovarian Cancer).

Patients may have been referred to an NCCN Member Institution after receiving a diagnosis of an LCOH tumor. The recommended initial surgical recommendation depends on the specific histologic diagnosis. Often, patients have been comprehensively staged (having met the standards for surgical staging of the GOG) and have undergone cytoreductive surgery. However, in some instances, they are referred after having had incomplete staging (ie, uterus and/or adnexa intact, omentum not removed, surgical stage not documented).

Clear Cell Carcinoma

For the 2016 update, the NCCN Panel added a new algorithm for patients with clear cell carcinoma of the ovary (see the NCCN Guidelines for Clear Cell Carcinoma and the WHO Histologic Classification in the NCCN Guidelines for Ovarian Cancer Histopathologies). Clear cell carcinomas are considered high-grade tumors; they are more common than the other LCOH. Most clear cell carcinomas are negative for WT1 and estrogen receptors. Because patients are typically diagnosed with clear cell carcinoma after pathologic analysis of a surgical specimen, the workup for suspicious or palpable pelvic masses is done before surgery as described in the algorithm (see Workup in the NCCN Guidelines for Epithelial Ovarian Cancer).

Primary treatment for these patients includes completion surgery with comprehensive staging followed by postoperative therapy (see the NCCN Guidelines for Clear Cell Carcinoma). Lymphadenectomy has been shown to improve survival. The staging system for ovarian and primary peritoneal cancer is also used for clear cell carcinomas (see Table 1 in the NCCN Guidelines for Ovarian Cancer). Lynch syndrome is associated with risk for endometrioid carcinomas, clear cell carcinomas, and papillary serous carcinomas. For patients with stage IA to IC disease, recommended postoperative treatment is either intravenous paclitaxel/carboplatin or docetaxel/carboplatin. Fertility-sparing surgery and/or observation/monitoring are an option for patients with unilateral clear cell borderline tumors (see the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential]). For patients with stage II to IV clear cell carcinoma, postoperative treatment is similar to that recommended for epithelial ovarian cancer. Patients with advanced clear cell carcinoma have a poor prognosis.

Mucinous Carcinomas

For the 2016 update, the NCCN Panel added a new algorithm for mucinous carcinoma of the ovary (see the NCCN Guidelines for Mucinous Carcinoma and the WHO Histologic Classification in the NCCN Guidelines for Ovarian Cancer Histopathologies). Patients with
mucinous carcinoma of the ovary are often diagnosed with early-stage disease and have a good prognosis; the 5-year disease-free survival is about 80% to 90%.134,406 Mucinous tumors are unusual because they may be very large cystic masses that may fill the entire abdominal pelvic cavity; this presentation often suggests mucinous histology. Patients with mucinous tumors typically present at a younger age (20–40 years) than women with high-grade serous ovarian cancer.

Patients are typically diagnosed with mucinous carcinoma after surgery for a suspicious pelvic mass (see Primary Treatment in the NCCN Guidelines for Epithelial Ovarian Cancer). Therefore, the initial workup is the same as for other types of ovarian cancer (see Workup in the NCCN Guidelines for Epithelial Ovarian Cancer). Primary treatment for these patients includes completion surgery with comprehensive staging followed by postoperative therapy or observation (see the NCCN Guidelines for Mucinous Carcinoma).134 An appendectomy is also recommended at primary surgery in patients with suspected or confirmed mucinous ovarian tumors. The staging system for ovarian and primary peritoneal cancer is also used for mucinous carcinomas (see Table 1 in the NCCN Guidelines for Ovarian Cancer).

The additional workup includes a gastrointestinal tract evaluation and CEA level for patients with mucinous histology to determine whether patients have either an occult gastrointestinal primary that has metastasized to the ovaries or primary mucinous carcinoma of the ovaries (see Workup in the NCCN Guidelines for Epithelial Ovarian Cancer).134 Metastases to the ovaries are more common, and primary mucinous tumors of the ovaries are uncommon; it is difficult to distinguish between metastatic adenocarcinomas to the ovaries and primary mucinous carcinomas.407–409 PAX8 immunostaining may be useful.407

Postoperative observation and monitoring are recommended for patients with stage IA or IB mucinous tumors because most of these tumors are benign or borderline.41,134 Fertility-sparing surgery is an option for patients with a unilateral mucinous borderline tumor (see the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential]). For patients with stage IC mucinous carcinomas, postoperative options include: 1) observation; 2) intravenous carboplatin with either paclitaxel or docetaxel; 3) 5-FU/leucovorin/oxaliplatin (gastrointestinal regimen); or 4) capecitabine/oxaliplatin (gastrointestinal regimen).134 Some clinicians feel the gastrointestinal regimens are appropriate because mucinous carcinomas of the ovary are similar to gastrointestinal tumors.410 For patients with stages II to IV mucinous carcinomas, postoperative options include: 1) chemotherapy using the regimens for epithelial ovarian cancer; 2) 5-FU/leucovorin/oxaliplatin (gastrointestinal regimen); or 3) capecitabine/oxaliplatin (gastrointestinal regimen).

Grade 1 (Low-Grade) Serous/Endometrioid Epithelial Carcinomas

For the 2016 update, the NCCN Panel added a new algorithm for grade 1 (low-grade) serous carcinomas/endometrioid epithelial carcinomas (see the NCCN Guidelines for Grade 1 (Low-Grade) Serous Carcinomas/Endometrioid Epithelial Carcinomas and the WHO Histologic Classification in the NCCN Guidelines for Ovarian Cancer Histopathologies).1 Endometrioid carcinomas may be associated with endometriosis.411,412 Endometrioid adenocarcinomas are usually positive for cytokeratin 7 (CK7), PAX8, CA-125, and estrogen receptors; metastatic colorectal adenocarcinomas are usually positive for CK20, CEA, and CDX2.41 Endometrioid tumors are also very similar in appearance to sex cord-stromal tumors.41 Lynch syndrome is associated with risk for endometrioid carcinomas, clear cell carcinomas, and serous carcinomas.16–18
Patients with grade 1 (low-grade) serous carcinomas may present with more advanced disease, but they often have more indolent disease and present at a younger age than those with high-grade serous carcinomas.141,413 Serous carcinomas are usually positive for WT1 and estrogen receptors.41 Primary treatment for these patients includes completion surgery with comprehensive staging followed by postoperative therapy or observation; patients are typically diagnosed after surgery (see the NCCN Guidelines for Grade 1 (Low-Grade) Serous Carcinomas/Endometrioid Epithelial Carcinomas).141 Fertility-sparing surgery is an option for patients with serous and endometrioid borderline tumors (see the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential] and the \textit{WHO Histologic Classification} in the NCCN Guidelines for Ovarian Cancer Histopathologies).1 Some clinicians feel that neoadjuvant therapy should not be recommended for patients with grade 1 (low-grade) serous carcinomas, because they often respond poorly to chemotherapy.141

Postoperative observation and monitoring are recommended for patients with stage IA or IB disease. For patients with stage IC to II disease, postoperative options include: 1) intravenous carboplatin with either paclitaxel or docetaxel; 2) observation (category 2B); or 3) hormone therapy including anastrozole, letrozole, leuprolide, or tamoxifen (category 2B for all hormone therapy). Postoperative options for patients with stage III to IV disease include: 1) first-line chemotherapy regimens used for epithelial ovarian cancer; or 2) hormone therapy (category 2B) as previously described (see \textit{Principles of Systemic Therapy: Primary Chemotherapy/Primary Adjuvant Therapy Regimens} in the NCCN Guidelines for Epithelial Ovarian Cancer).141,414

Malignant Germ Cell Tumors

These malignant tumors include dysgerminomas, immature teratomas, embryonal tumors, and endodermal sinus (yolk sac) tumors (see the NCCN Guidelines for Malignant Germ Cell Tumors and the \textit{WHO Histologic Classification} in the NCCN Guidelines for Ovarian Cancer Histopathologies).1 They mainly occur in girls, adolescents, and younger women who are often diagnosed with stage I disease; the median age at diagnosis is 16 to 20 years.417,418 Germ cell tumors are the predominant ovarian tumor in this age group.419 The recommended workup may include pulmonary function studies if bleomycin is being considered (see \textit{Recommended Workup} in the NCCN Guidelines for Epithelial Ovarian Cancer).117,420 In young women (<35 years) with a pelvic mass, AFP levels can indicate the presence of germ cell tumors.419 Gonadal dysgenesis is a risk factor for germ cell tumors.419 Malignant germ cell tumors have an excellent prognosis. After appropriate treatment, 5-year survival is more than 85%.417,421,422

\textbf{Treatment}

Completion surgery with comprehensive staging is recommended as initial surgery for patients who do not desire fertility preservation (see the NCCN Guidelines for Malignant Germ Cell Tumors).419 The staging system for ovarian and primary peritoneal cancer is also used for malignant germ cell tumors (see Table 1 in the NCCN Guidelines for Epithelial Ovarian Cancer). After comprehensive surgical staging, observation with monitoring is recommended for patients with stage I dysgerminoma or stage I, grade 1 immature teratoma.423 Surgery for children or adolescents may differ from that for adult women (see \textit{Principles of Surgery} in the NCCN Guidelines for Ovarian Cancer). In children or adolescents with early-stage germ cell tumors, comprehensive staging may be omitted.424,425 If these patients have had incomplete surgical staging, recommended options depend on the type
of tumor, the results of imaging and tumor marker testing (eg, AFP, beta-HCG), the age of the patient, and whether the patient desires fertility preservation (see the NCCN Guidelines for Malignant Germ Cell Tumors). Fertility-sparing surgery should be considered for those desiring fertility preservation, regardless of stage (see the NCCN Guidelines for Malignant Germ Cell Tumors). Patients who chose fertility-sparing surgery should be monitored by ultrasound examinations if necessary; completion surgery (category 2B) should be considered after finishing childbearing.

After surgery, observation with surveillance is the recommended option for patients with stage I dysgerminoma or stage I, grade I immature teratoma based on European and pediatric reports. Observation or chemotherapy may be considered for children or adolescents with select stage IA or IB tumors (see the NCCN Guidelines for Malignant Germ Cell Tumors).

For patients with stage II to IV malignant dysgerminomas or immature teratomas, postoperative chemotherapy is recommended (see Principles of Systemic Therapy: Malignant Germ Cell Tumors in the NCCN Guidelines for Epithelial Ovarian Cancer and the Less Common Ovarian Histopathologies).

Postoperative chemotherapy for 3 to 4 cycles with bleomycin/etoposide/cisplatin (BEP) (category 2B for 3 vs. 4 cycles) is recommended for: 1) any stage embryonal tumors or endodermal sinus tumors; 2) stages II to V dysgerminoma; or 3) stage I, grade 2 to 3, or stage II to IV immature teratoma (see the principles of Systemic Therapy: Malignant Germ Cell Tumors in the NCCN Guidelines for Epithelial Ovarian Cancer and the Less Common Ovarian Histopathologies).

If considering the use of bleomycin, pulmonary function tests are recommended. The 4-cycle BEP regimen is recommended (category 2A) as the standard regimen. Although most clinicians avoid a 3-week BEP regimen, some feel that a 3-week BEP regimen (3 cycles) may be useful in patients with low-risk or stage 1 disease, although this is a category 2B recommendation; the Memorial Sloan Kettering Cancer Center criteria can be used to identify tumors that are low risk. In select patients with stage IB to III dysgerminoma for whom minimizing toxicity is critical, 3 courses of etoposide/carboplatin can be used (carboplatin 400 mg/m² [AUC = 5–6] on day 1 plus etoposide 120 mg/m² on days 1–3 every 4 weeks for 3 courses). Dose reductions or delays are not recommended even in the setting of neutropenia.

Surveillance recommendations for germ cell tumors are described in the algorithm (see Surveillance for Germ Cell and Sex Cord-Stromal Tumors in the NCCN Guidelines for Malignant Germ Cell and Sex Cord-Stromal Tumors). Patients achieving a complete clinical response after chemotherapy should be observed clinically every 2 to 4 months with AFP and beta-HCG levels (if initially elevated) for 2 years. For those with abnormal markers and definitive recurrent disease, options (category 2B) include: 1) high-dose chemotherapy; or 2) consider additional chemotherapy (see Principles of Systemic Therapy: Acceptable Recurrence Therapies in the NCCN Guidelines for Epithelial Ovarian Cancer). Referral of these patients to a tertiary care center for stem-cell transplant consultation and potentially curative therapy is strongly recommended. Several case reports suggest that patients who have received chemotherapy for germ cell tumors may later present with growing teratoma syndrome.

Residual or Recurrent Disease

For patients having radiographic evidence of residual tumor (after surgery and chemotherapy) but with normal AFP and beta-HCG, consider surgical resection of the tumor; observation with monitoring is also an option. Clinical judgment should be used regarding the frequency of imaging. Further options depend on which findings are
Malignant Sex Cord-Stromal Tumors

Malignant sex cord-stromal tumors are rare and include granulosa cell tumors (most common) and Sertoli-Leydig cell tumors; they are typically associated with a good prognosis.460,461 Most patients with granulosa tumors present with early-stage disease; the disease is typically indolent.462 For the 2016 update, the complete histologic classification for ovarian cancer from the WHO was added to the NCCN Guidelines, which includes the different types of sex cord-stromal tumors; it is important to determine whether the sex cord-stromal tumor is benign or malignant (see \textit{WHO Histologic Classification: Sex Cord-Stromal Tumors} in the NCCN Guidelines for Ovarian Cancer Histopathologies).1

The staging system for ovarian and primary peritoneal cancer is also used for sex cord-stromal tumors (see Table 1 in the NCCN Guidelines for Ovarian Cancer).

Patients with stage IA or IC sex cord-stromal tumors desiring to preserve their fertility should be treated with fertility-sparing surgery (see the NCCN Guidelines for Malignant Sex Cord-Stromal Tumors).462-465 Although complete staging is recommended for all other patients, lymphadenectomy may be omitted for stage IA or IC tumors.466 For patients who choose fertility-sparing surgery, completion surgery (category 2B) should be considered after childbearing is finished. Postoperative options in the NCCN Guidelines have category 2B recommendations (see the NCCN Guidelines for Malignant Sex Cord-Stromal Tumors).463 For patients with high-risk stage I tumors (tumor rupture, stage 1C, poorly differentiated tumor, and tumor size >10–15 cm467), postoperative recommendations (all are category 2B) include observation or consideration of platinum-based chemotherapy.468 Those with surgical findings of low-risk stage I tumor (ie, without high-risk features) should be observed (see \textit{Surveillance for Germ Cell and Sex Cord-Stromal Tumors} in the NCCN Guidelines for Less Common...
Ovarian Histopathologies. For patients with granulosa cell tumors who are being observed, inhibin levels can be followed if they were initially elevated (category 2B). For patients with stage II to IV tumors, recommended options (all are category 2B) include RT for limited disease or platinum-based chemotherapy (BEP or paclitaxel/carboplatin regimens are preferred).469-472

Surveillance recommendations for malignant sex cord-stromal tumors are provided in the algorithm, which are based on the SGO recommendations (see Surveillance for Germ Cell and Sex Cord-Stromal Tumors in the NCCN Guidelines for Less Common Ovarian Histopathologies).297 Prolonged surveillance is recommended for granulosa cell tumors, because they can recur years later (eg, 30 years).427,460,461,473 For patients with stage II to IV tumors who subsequently have a clinical relapse, options include a clinical trial or recurrence therapy (see Principles of Systemic Therapy: Acceptable Recurrence Therapies for Malignant Germ Cell/Sex Cord-Stromal Tumors in the NCCN Guidelines for Epithelial Ovarian Cancer).461,473-476

Cytotoxic recurrence therapy includes: docetaxel, paclitaxel, paclitaxel/ifosfamide, paclitaxel/carboplatin, and VAC. Hormone recurrence therapy includes: aromatase inhibitors, leuprolide, and tamoxifen. Note that single-agent bevacizumab or leuprolide is an option for patients with recurrent granulosa cell tumors.476,477 Secondary cytoreductive surgery may also be considered. Palliative localized RT may also be useful.

Carcinosarcomas (Malignant Mixed Müllerian Tumors)
MMMTs are rare tumors with a poor prognosis; they are the most aggressive tumors in the algorithm (see the NCCN Guidelines for Less Common Ovarian Histopathologies).478-481 Most pathologists now consider MMMTs to be a variant of poor risk, poorly differentiated epithelial ovarian cancer (metaplastic carcinoma).482 Patients with MMMTs are not candidates for fertility-sparing surgery regardless of age. The staging system for ovarian and primary peritoneal cancer is also used for MMMTs (see Table 1 in the NCCN Guidelines for Ovarian Cancer).480

Optimal surgical debulking is recommended for patients with MMMTs (see Principles of Surgery in the NCCN Guidelines for Ovarian Cancer).480,483-485 After complete surgical staging, several postoperative chemotherapy regimens are recommended for patients with stage I to IV MMMT. Patients with stage I to IV MMMT or recurrence may be treated using the same primary chemotherapy regimens that are recommended for epithelial ovarian cancer (see Primary Chemotherapy/Primary Adjuvant Therapy in the NCCN Guidelines for Ovarian Cancer).482,486-491 The IP chemotherapy regimen described for ovarian cancer can be used for select patients with MMMT. For the 2016 update, the NCCN Panel also added 3 new postoperative chemotherapy options for patients with stage I to IV MMMT or recurrence: cisplatin/ifosfamide (category 2A), carboplatin/ifosfamide (category 2A), and ifosfamide/paclitaxel (category 2B).478,482,486,492 After treatment, the surveillance and follow-up recommendations for epithelial ovarian cancer are also used for MMMTs.

Borderline Epithelial Tumors (Low Malignant Potential Tumors)

Diagnosis
The terms for borderline epithelial tumors (also known as low malignant potential tumors or atypical proliferative tumors) have changed over the years.41 The 2016 CAP cancer protocol for ovarian cancer uses borderline and does not use low malignant potential.102 Borderline epithelial tumors are typically serous or mucinous; other histologic subtypes can also occur (see WHO Histologic Classification in the NCCN Guidelines for Ovarian Cancer Histopathologies).1,399 A
borderline tumor is a primary epithelial lesion with cytologic characteristics suggesting malignancy but without frank invasion and with a clinically indolent course and good prognosis.493,494 Five-year survival exceeds 80%.495 In contrast to patients with frankly invasive ovarian carcinoma, women with borderline epithelial tumors tend to be younger, are often diagnosed with stage I disease, and are candidates for fertility-sparing surgery.496,497

Borderline epithelial tumors are rare tumors and are managed differently than high-grade carcinomas (see the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]).399,498

The characteristic pathologic hallmark of typical epithelial ovarian cancer is the identification of peritoneal implants, which microscopically and/or macroscopically invade the peritoneum. A borderline epithelial tumor has the visual appearance of peritoneal carcinomatosis. However, microscopic evaluation fails to reveal evidence of frank invasion by the tumor nodules, although rarely invasive implants (which continue to be consistent with the diagnosis of borderline epithelial lesions) can be identified microscopically by the pathologist.

Treatment

Surgery is the primary treatment for borderline epithelial tumors, including standard ovarian cancer debulking surgery or fertility-sparing surgery depending on the surgical evaluation and other factors (see the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]).499 Treatment guidelines for borderline epithelial tumors depend on the histologic and clinical characteristics, the age of the patient,497 and whether invasive implants are present. Patients should be evaluated by a gynecologic oncologist. At NCCN Member Institutions, patients may be initially evaluated with an undiagnosed pelvic mass or with an established diagnosis of borderline epithelial tumor. NCCN Panel Members are less likely to recommend aggressive treatment after surgery; observation is one of several possible approaches.399,500 Although the staging system for epithelial ovarian cancer is used for borderline epithelial tumors, the NCCN Guidelines use the presence or absence of invasive implants to determine the need for postoperative therapy (see the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]).

Patients with a borderline epithelial tumor who desire to maintain their fertility may undergo surgery limited to a USO (preserving the uterus, contralateral ovary, and contralateral Fallopian tube) with resection of residual disease.149,150,501 If the patient does not desire fertility-sparing surgery, standard ovarian cancer debulking surgery and resection of residual disease are recommended. Data do not show increased survival with lymphadenectomy and omentectomy for borderline epithelial tumor, although upstaging does occur.502,503 For the 2016 update, the NCCN Panel deleted the recommendation for comprehensive surgical staging (category 2B); lymph node evaluation may be considered on a case-by-case basis.

For patients with known borderline epithelial tumor who had incomplete previous surgery and/or were incompletely staged at the time of their initial laparotomy, recommendations depend on whether invasive implants are present and whether fertility preservation is desired (see Primary Treatment for Incomplete Previous Surgery in the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]). Patients who want to preserve their fertility should have fertility-sparing surgery and resection of residual disease. Some clinicians feel that the appearance of invasive implants on the peritoneal surfaces in patients with borderline epithelial tumors portends a less favorable prognosis; therefore, postoperative chemotherapy with the same regimens used for grade 1 (low-grade) serous epithelial ovarian cancer can be considered for these patients (see Primary Treatment in...
the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]). For the 2016 update, the NCCN Panel revised this recommendation for postoperative chemotherapy to category 2A (from category 2B); intravenous carboplatin with either docetaxel or paclitaxel is recommended. However, the benefit of chemotherapy, either IP or intravenous, is controversial in patients with borderline epithelial tumors. The significance of invasive implants remains under investigation. The benefit of postoperative chemotherapy has not been demonstrated for patients who have no microscopically demonstrable invasive implants. Although observation is an option for all patients, it is a category 3 recommendation for patients with invasive implants and a category 2B recommendation for patients without invasive implants; these recommendations were revised for the 2016 update (see Primary Treatment for Borderline Epithelial Tumors [Low Malignant Potential Tumors]).

Follow-up
Treatment recommendations after surgery depend on the presence or absence of invasive implants. The initial therapeutic approach for patients having invasive implants may include treatment with the same chemotherapeutic regimens used for grade 1 (low-grade) serous epithelial ovarian cancer or observation (category 3) (see Primary Treatment in the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]). Patients with no invasive implants may be observed (category 2B) and monitored (see Monitoring/Follow-Up in the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]). Patients who chose fertility-sparing surgery should be monitored by ultrasound examinations if necessary. After childbearing is completed, completion surgery should be considered (category 2B).

Relapse
At the time of clinical relapse, surgical evaluation and debulking are recommended if appropriate. For the 2016 update, the NCCN Panel revised the algorithm by clarifying the recommendations for low-grade and high-grade disease. Patients who have low-grade invasive carcinoma or invasive implants from borderline epithelial tumors may be treated as per grade 1 (low-grade) serous epithelial ovarian cancer; those with high-grade invasive implants may be treated as per epithelial ovarian cancer (see Primary Chemotherapy/Primary Adjuvant Therapy in the NCCN Guidelines for Borderline Epithelial Tumors [Low Malignant Potential Tumors]). Observation is recommended for those with noninvasive disease.

Recommended Readings

References

121. Castellucci P, Perrone AM, Picchio M, et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed

165. Oliver Perez MR, Magrina J, Garcia AT, Jimenez Lopez JS. Prophylactic salpingectomy and prophylactic salpingoophorectomy for...

179. Chi DS, Eisenhauer EL, Zivanovic O, et al. Improved progression-free and overall survival in advanced ovarian cancer as a result of a

207. Mueller JJ, Zhou QC, Iasonos A, et al. Neoadjuvant chemotherapy and primary debulking surgery utilization for advanced-stage ovarian...

305. Bast RC, Jr. CA 125 and the detection of recurrent ovarian cancer: a reasonably accurate biomarker for a difficult disease. Cancer...

348. Rose PG, Blessing JA, Ball HG, et al. A phase II study of docetaxel in paclitaxel-resistant ovarian and peritoneal carcinoma: a Gynecologic...
Ovarian Cancer

447. Williams SD, Kauderer J, Burnett AF, et al. Adjuvant therapy of completely resected dysgerminoma with carboplatin and etoposide: a

