NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Lung Cancer Screening
Version 3.2018 — January 18, 2018

NCCN.org

NCCN Guidelines for Patients® available at www.nccn.org/patients
NCCN Guidelines Version 3.2018 Table of Contents
Lung Cancer Screening

NCCN Lung Cancer Screening Panel Members

Summary of Guidelines Updates

Risk Assessment (LCS-1)
Screening Findings (LCS-2)
Solid Nodule on Initial Screening LDCT (LCS-3)
Part-solid Nodule on Initial Screening LDCT (LCS-4)
Non-solid Nodule on Initial Screening LDCT (LCS-5)
New Nodule on Follow-up or Annual LDCT (LCS-6)
Solid Nodule on Follow-up or Annual LDCT (LCS-7)
Part-solid Nodule on Follow-up or Annual LDCT (LCS-8)
Non-solid Nodule on Follow-up or Annual LDCT (LCS-9)
Multiple Non-solid Nodules (LCS-10)

Low-Dose Computed Tomography Acquisition, Storage, Interpretation, and Nodule Reporting (LCS-A)
Risks/Benefits of Lung Cancer Screening (LCS-B)

Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here: nccn.org/clinical_trials/physician.html.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated.

See NCCN Categories of Evidence and Consensus.

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2018.
Updates in Version 3.2018 of the NCCN Guidelines for Lung Cancer Screening from Version 2.2018 include:

LCS-3
• Footnote q modified: Criteria for suspicion of malignancy: hypermetabolism higher than the background of surrounding lung parenchyma greater than the adjacent mediastinal blood pool, regardless of absolute SUV. (also applies to LCS-4, LCS-7, LCS-8)

MS-1
• The Discussion section has been updated to reflect the changes in the algorithm

Updates in Version 2.2018 of the NCCN Guidelines for Lung Cancer Screening from Version 1.2018 include:

MS-1
• The Discussion section has been updated to reflect the changes in the algorithm

Updates in Version 1.2018 of the NCCN Guidelines for Lung Cancer Screening from Version 1.2017 include:

Global changes
• Symbols used in numerical ranges made consistent and based on rounding to whole numbers.

LCS-1
• Risk Status; High risk; bullet 6 modified: "Additional risk factors (other than second-hand smoke) that increase the risk of lung cancer to ≥1.3% (see footnote i)"
• Footnote i, third sentence modified: It is reasonable to consider using the Tammemagi lung cancer risk calculator to assist in quantifying risk for individuals in this group, considering a 1.3% threshold of lung cancer risk over a 6 year timeframe was considered similar to that of the USPSTF (Tammemägi MC, Church TR, Hocking WG, et al. Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts. PLOS Med 2014;11:1-13).

LCS-3
• Footnote r modified: "The evaluation for the suspicion of lung cancer requires a multidisciplinary approach with expertise in lung nodule management (thoracic radiology, pulmonary medicine, and thoracic surgery). This may include use of a lung nodule risk calculator to assist with probability determination. Examples of lung nodule risk calculators: Mayo risk model; Brock university model; model by Herder, GJ et al. Chest 2005;128:2490-2496. The use of risk calculators does not replace multidisciplinary nodule management. Geographic and other factors can substantially influence the accuracy of nodule calculators." (also applies to LCS-4, LCS-7, LCS-8)

LCS-10
• Link added to the NCCN Guidelines for Non-Small Cell Lung Cancer.
RISK ASSESSMENT

- Smoking history
- Radon exposure
- Occupational exposure
- Cancer history
- Family history of lung cancer in first-degree relatives
- Disease history (COPD or pulmonary fibrosis)
- Smoking exposure (second-hand smoke)
- Absence of symptoms or signs of lung cancer (if symptoms, see appropriate NCCN Guidelines)
- Lung Cancer Survivors see Surveillance in the NCCN Guidelines for Non-Small Cell Lung Cancer

RISK STATUS

- **High risk:**
 - Age 55–74 y and
 - ≥30 pack-year history of smoking and
 - Smoking cessation <15 y (category 1) or
 - Age ≥50 y and
 - ≥20 pack-year history of smoking and
 - Additional risk factors (other than second-hand smoke) that increase the risk of lung cancer to ≥1.3% (see footnote i)

- **Moderate risk:**
 - Age ≥50 y and
 - ≥20 pack-year history of smoking or second-hand smoke exposure
 - No additional risk factors

- **Low risk:**
 - Age <50 y and/or
 - <20 pack-year history of smoking

SCREENING

- In candidates for screening, shared patient/physician decision making is recommended, including a discussion of benefits/risks

- Lung cancer screening not recommended

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 3.2018
Lung Cancer Screening

SCREEnING FINDINGS

Lung nodule(s) on LDCT

Solid nodule

Part-solid nodule

Non-solid nodule

Initial screening LDCT

Follow-up or annual screening LDCT

See Evaluation of Screening Findings (LCS-3) [Solid nodule on initial screening LDCT]

See Evaluation of Screening Findings (LCS-4) [Part-solid nodule on initial screening LDCT]

See Evaluation of Screening Findings (LCS-5) [Non-solid nodule on initial screening LDCT]

See Evaluation of Screening Findings (LCS-7) [Solid nodule on follow-up or annual LDCT]

See Evaluation of Screening Findings (LCS-8) [Part-solid nodule on follow-up or annual LDCT]

See Evaluation of Screening Findings (LCS-9) [Non-solid nodule on follow-up or annual LDCT]

See Evaluation of Screening Findings (LCS-10) [Multiple non-solid nodules]

No lung nodule(s) on LDCT

Annual screening LDCT until patient is no longer a candidate for definitive treatment

Findings requiring follow-up for diseases other than lung cancer (e.g., suspicious for other cancers, COPD, moderate to severe coronary artery calcification, aortic aneurysm)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

k All screening and follow-up chest CT scans should be performed at low dose (100–120 kVp and 40–60 mAs or less), unless evaluating mediastinal abnormalities or lymph nodes, where standard-dose CT with IV contrast might be appropriate (See LCS-A). There should be a systematic process for appropriate follow-up.

m Without benign pattern of calcification, fat in nodule suggestive of hamartoma, or features suggesting inflammatory etiology. When multiple nodules or other findings are present that suggest occult infection or inflammation is a possibility, suggest follow-up LDCT in 1–3 months.

n There is uncertainty about the appropriate duration of screening and the age at which screening is no longer appropriate.
EVALUATION OF SCREENING FINDINGS

FOLLOW-UP OF SCREENING FINDINGS

≤5 mm
Annual screening LDCT until patient is no longer a candidate for definitive treatment

6–7 mm
LDCT in 6 mo

8–14 mm
LDCT in 3 mo or Consider PET/CT

≥15 mm
Chest CT ± contrast and/or PET/CT

Solid nodule on initial screening LDCT

Solid endobronchial nodule

LDCTk in 1 mo (immediately after vigorous coughing)

If no resolution Bronchoscopy

EVALUATION OF SCREENING FINDINGS

FOLLOW-UP OF SCREENING FINDINGS

≤5 mm
Annual screening LDCT until patient is no longer a candidate for definitive treatment

6–7 mm
LDCT in 6 mo

8–14 mm
LDCT in 3 mo or Consider PET/CT

≥15 mm
Chest CT ± contrast and/or PET/CT

Solid nodule on initial screening LDCT

Solid endobronchial nodule

LDCTk in 1 mo (immediately after vigorous coughing)

If no resolution Bronchoscopy

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Evaluation of Screening Findings

<table>
<thead>
<tr>
<th>Part-solid nodule on initial screening LDCT<sup>m,v</sup></th>
<th>Solid component ≥8 mm<sup>o</sup></th>
<th>≤5 mm<sup>o</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>≥6 mm with solid component</td>
<td>Chest CT ± contrast and/or PET/CT<sup>p</sup></td>
<td>Low suspicion of lung cancer<sup>r</sup></td>
</tr>
<tr>
<td>≥6 mm with solid component 6–7 mm<sup>o</sup></td>
<td>Consider PET/CT<sup>p</sup></td>
<td>LDCT in 3 mo<sup>k</sup></td>
</tr>
<tr>
<td>≤5 mm<sup>o</sup></td>
<td></td>
<td>See Evaluation (LCS-8)</td>
</tr>
</tbody>
</table>

Follow-up of Screening Findings

- **Annual screening LDCT until patient is no longer a candidate for definitive treatment**^{k,n}:
 - LDCT in 6 mo^k
 - LDCT in 3 mo^k or Consider PET/CT^p
 - Low suspicion of lung cancer^r → LDCT in 3 mo^k
 - High suspicion of lung cancer^{q,r}
 - Biopsy^{s,t,u} or Surgical excision^u
 - Cancer confirmed

- **Annual screening LDCT until patient is no longer a candidate for definitive treatment**^{k,n}:
 - See Evaluation (LCS-8)

^kAll screening and follow-up chest CT scans should be performed at low dose (100–120 kVp and 40–60 mAs or less), unless evaluating mediastinal abnormalities or lymph nodes, where standard dose CT with IV contrast might be appropriate. (See LCS-A). There should be a systematic process for appropriate follow-up.

^mWithout benign pattern of calcification, fat in nodule suggestive of hamartoma, or features suggesting inflammatory etiology. When multiple nodules or other findings are present that suggest occult infection or inflammation is a possibility, suggest follow-up LDCT in 1–3 months.

ⁿThere is uncertainty about the appropriate duration of screening and the age at which screening is no longer appropriate.

^pNodules should be measured on lung windows and reported as the average diameter rounded to the nearest whole number; for round nodules only a single diameter measurement is necessary. Mean diameter is the mean of the longest diameter of the nodule and its perpendicular diameter.

^qPET has a low sensitivity for nodules with less than 8 mm of solid component and for small nodules near the diaphragm. PET/CT is only one consideration of multiple criteria for determining whether a nodule has a high risk of being lung cancer. In areas endemic for fungal disease, the false-positive rate for PET/CT is higher.

^rCriteria for suspicion of malignancy: hypermetabolism greater than the adjacent mediastinal blood pool, regardless of absolute SUV.

^sThe evaluation for the suspicion of lung cancer requires a multidisciplinary approach with expertise in lung nodule management (thoracic radiology, pulmonary medicine, and thoracic surgery). This may include use of a lung nodule risk calculator to assist with probability determination. Examples of lung nodule risk calculators: Mayo risk model, Brock university model, model by Herder, G.J et al. Chest 2005;128:2490-2496. The use of risk calculators does not replace multidisciplinary nodule management. Geographic and other factors can substantially influence the accuracy of nodule calculators.

^tTissue samples need to be adequate for both histology and molecular testing. T.Travis WD, et al. Rationale for classification in small biopsies and cytology. In, WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart, 4th Ed. Lyon:International Agency for Research on Cancer;2015:16-17.

^uIf biopsy is non-diagnostic and a strong suspicion for cancer persists, suggest repeat biopsy or surgical excision or short-interval follow-up (3 months).

^vSee the diagnostic evaluation of a lung nodule (DIAG-1 through DIAG-A) in the NCCN Guidelines for Non-Small Cell Lung Cancer.

^wIt is crucial that all nonsolid lesions be reviewed at thin (<1.5 mm) slices to exclude any solid components. Any solid component in the nodule requires management of the lesion with the part-solid recommendations (LCS-8).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
All screening and follow-up chest CT scans should be performed at low dose (100–120 kVp and 40–60 mAs or less), unless evaluating mediastinal abnormalities or lymph nodes, where standard dose CT with IV contrast might be appropriate. (See LCS-A). There should be a systematic process for appropriate follow-up.

Without benign pattern of calcification, fat in nodule suggestive of hamartoma, or features suggesting inflammatory etiology. When multiple nodules or other findings are present that suggest occult infection or inflammation is a possibility, suggest follow-up LDCT in 1–3 months.

There is uncertainty about the appropriate duration of screening and the age at which screening is no longer appropriate.

Nodules should be measured on lung windows and reported as the average diameter rounded to the nearest whole number; for round nodules only a single diameter measurement is necessary. Mean diameter is the mean of the longest diameter of the nodule and its perpendicular diameter.

It is crucial that all non-solid lesions be reviewed at thin (<1.5 mm) slices to exclude any solid components. Any solid component in the nodule requires management of the lesion with the part-solid recommendations (LCS-8).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
All screening and follow-up chest CT scans should be performed at low dose (100–120 kVp and 40–60 mAs or less), unless evaluating mediastinal abnormalities or lymph nodes, where standard dose CT with IV contrast might be appropriate. (See LCS-A). There should be a systematic process for appropriate follow-up.

Without benign pattern of calcification, fat in nodule suggestive of hamartoma, or features suggesting inflammatory etiology. When multiple nodules or other findings are present that suggest occult infection or inflammation is a possibility, suggest follow-up LDCT in 1–3 months.

There is uncertainty about the appropriate duration of screening and the age at which screening is no longer appropriate.

Rapid increase in size should raise suspicion of inflammatory etiology or malignancy other than non-small cell lung cancer.

New nodule is defined as ≥3 mm in mean diameter.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
EVALUATION OF SCREENING FINDINGS

FOLLOW-UP OF SCREENING FINDINGS

- **≤3 mm**
 - Annual LDCT
 - Unchanged
 - LDCT in 6 mo

- **4–5 mm**
 - Annual LDCT
 - Unchanged
 - LDCT in 6 mo

- **6–7 mm**
 - Annual LDCT
 - Unchanged
 - LDCT in 6 mo

- **≥8 mm**
 - Chest CT ± contrast and/or PET/CT
 - Low suspicion of lung cancer
 - LDCT in 3 mo

- **≥15 mm**
 - Annual LDCT
 - Unchanged
 - LDCT in 6 mo

- **≥18 mm**
 - Chest CT ± contrast and/or PET/CT
 - High suspicion of lung cancer
 - Biopsy or Surgical excision
 - LDCT in 3 mo

- **Growing**
 - Chest CT ± contrast and/or PET/CT
 - Low suspicion of lung cancer
 - LDCT in 3 mo

- **≥7 mm**
 - Chest CT ± contrast and/or PET/CT
 - High suspicion of lung cancer
 - Biopsy or Surgical excision
 - LDCT in 3 mo

- **≤7 mm**
 - Annual LDCT
 - Unchanged
 - LDCT in 6 mo

- **≥8 mm**
 - Chest CT ± contrast and/or PET/CT
 - High suspicion of lung cancer
 - Biopsy or Surgical excision
 - LDCT in 3 mo

- **≥15 mm**
 - Annual LDCT
 - Unchanged
 - LDCT in 6 mo

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 3.2018
Lung Cancer Screening

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

EVALUATION OF SCREENING FINDINGS

FOLLOW-UP OF SCREENING FINDINGS

- ≤5 mm
- ≥6 mm with 6–7 mm solid component
- ≥6 mm with ≥8 mm solid component
- ≥26 mm with growing ≤3 mm solid component
- ≥24 mm solid component
- New or Growing

Unchanged on follow-up LDCT
Unchanged on annual LDCT
New or Growing

≤5 mm
≥6 mm with growing ≤3 mm solid component
≥4 mm solid component

LDCT in 6 mo
LDCT in 3 mo
Chest CT ± contrast and/or PET/CT

Low suspicion of lung cancer
High suspicion of lung cancer

Annual LDCT
Annual LDCT
Annual LDCT

Unchanged
Unchanged

Classification of Nodule

PET/CT
Biopsy
or Surgical excision

No cancer
Cancer confirmed

Annual LDCT until patient is no longer a candidate for definitive treatment

See appropriate NCCN Guidelines

Part-solid nodule(s) on follow-up or annual LDCT

≤5 mm
≥26 mm with 6–7 mm solid component
≥26 mm with ≥8 mm solid component

Annual LDCT
Annual LDCT

Annual LDCT

Annual LDCT until patient is no longer a candidate for definitive treatment

See appropriate NCCN Guidelines

k All screening and follow-up chest CT scans should be performed at low dose (100–120 kVp and 40–60 mAs or less), unless evaluating mediastinal abnormalities or lymph nodes, where standard dose CT with IV contrast might be appropriate. (See LCS-A). There should be a systematic process for appropriate follow-up.

m Without benign pattern of calcification, fat in nodule suggestive of hamartoma, or features suggesting inflammatory etiology. When multiple nodules or other findings are present that suggest occult infection or inflammation is a possibility, suggest follow-up LDCT in 1–3 months.

n There is uncertainty about the appropriate duration of screening and the age at which screening is no longer appropriate.

p PET has a low sensitivity for nodules with less than 8 mm of solid component and for small nodules near the diaphragm. PET/CT is only one consideration of multiple criteria for determining whether a nodule has a high risk of being lung cancer. In areas endemic for fungal disease, the false-positive rate for PET/CT is higher.

q Criteria for suspicion of malignancy: hypermetabolism greater than the adjacent mediastinal blood pool, regardless of absolute SUV.

r Criteria for suspicion of malignancy: hypermetabolism greater than the adjacent mediastinal blood pool, regardless of absolute SUV.

t If biopsy is non-diagnostic and a strong suspicion for cancer persists, suggest repeat biopsy or surgical excision or short-interval follow-up (3 months).

u See the diagnostic evaluation of a lung nodule (DIAG-1 through DIAG-A) in the NCCN Guidelines for Non-Small Cell Lung Cancer.

w Rapid increase in size should raise suspicion of inflammatory etiology or malignancy other than non-small cell lung cancer (See LCS-6).
Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
EVALUATION OF SCREENING FINDINGS

- **Pure non-solid nodules**
 - Measure the largest nodule and manage based on LCS-5 or LCS-9

- **Multiple non-solid nodules**
 - For multiple nodules, follow-up LDCT in 1–3 months.
 - Measurement is necessary. Mean diameter is the mean of the longest diameter of the nodule and its perpendicular diameter.

- **Dominant nodule(s) with part-solid component**
 - Measure the largest nodule and manage based on LCS-4 or LCS-8

FOLLOW-UP OF SCREENING FINDINGS

- **Without benign pattern of calcification, fat in nodule suggestive of hamartoma, or features suggesting inflammatory etiology.** When multiple nodules or other findings are present that suggest occult infection or inflammation is a possibility, suggest follow-up LDCT in 1–3 months.

- **Nodules should be measured on lung windows and reported as the average diameter rounded to the nearest whole number; for round nodules only a single diameter measurement is necessary.**

- **Rapid increase in size should raise suspicion of inflammatory etiology or malignancy other than non-small cell lung cancer.** (see LCS-6)

- **It is crucial that all nonsolid lesions be reviewed at thin (<1.5 mm) slices to exclude any solid components. Any solid component in the nodule requires management of the lesion with the part-solid recommendations (see LCS-4 or LCS-8).**

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Low-Dose Computed Tomography Screening Acquisition, Storage, Interpretation, and Nodule Reporting

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Small Patient (BMI ≤30)</th>
<th>Large Patient (BMI >30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total radiation exposure</td>
<td>≤3 mSv</td>
<td>≤5 mSv</td>
</tr>
<tr>
<td>kVp</td>
<td>100–120</td>
<td>120</td>
</tr>
<tr>
<td>mAs</td>
<td>≤40</td>
<td>≤60</td>
</tr>
<tr>
<td>All Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gantry rotation speed</td>
<td>≤0.5</td>
<td></td>
</tr>
<tr>
<td>Detector collimation</td>
<td>≤1.5 mm</td>
<td></td>
</tr>
<tr>
<td>Slice width</td>
<td>≤2.5 mm; ≤1.0 mm preferred</td>
<td></td>
</tr>
<tr>
<td>Slice interval</td>
<td>≤slice width; 50% overlap preferred for 3D and CAD applications</td>
<td></td>
</tr>
<tr>
<td>Scan acquisition time</td>
<td>≤10 seconds (single breath hold)</td>
<td></td>
</tr>
<tr>
<td>Breathing</td>
<td>Maximum inspiration</td>
<td></td>
</tr>
<tr>
<td>Contrast</td>
<td>No oral or intravenous contrast</td>
<td></td>
</tr>
<tr>
<td>CT scanner detectors</td>
<td>≥16</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All acquired images, including thin sections; MIPs and CAD renderings if used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretation Tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform</td>
<td>Computer workstation review</td>
<td></td>
</tr>
<tr>
<td>Image type</td>
<td>Standard and MIP images</td>
<td></td>
</tr>
<tr>
<td>Comparison studies</td>
<td>Comparison with prior chest CT images (not reports) is essential to evaluate change in size, morphology, and density of nodules; review of serial chest CT exams is important to detect slow growth</td>
<td></td>
</tr>
<tr>
<td>Nodule Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>Largest mean diameter on a single image*</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>Solid, ground-glass, or mixed†</td>
<td></td>
</tr>
<tr>
<td>Calcification</td>
<td>Present/absent; if present: solid, central vs. eccentric, concentric rings, popcorn, stippled, amorphous</td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>Report if present</td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Round/ovoid, triangular</td>
<td></td>
</tr>
<tr>
<td>Margin</td>
<td>Smooth, lobulated, spiculated</td>
<td></td>
</tr>
<tr>
<td>Lung location</td>
<td>By lobe of the lung, preferably by segment, and if subpleural</td>
<td></td>
</tr>
<tr>
<td>Location in dataset</td>
<td>Specify series and image number for future comparison</td>
<td></td>
</tr>
<tr>
<td>Temporal comparison</td>
<td>If unchanged, include the longest duration of no change as directly viewed by the interpreter on the images (not by report); if changed, report current and prior size</td>
<td></td>
</tr>
</tbody>
</table>

*Mean of the longest diameter of the nodule and its perpendicular diameter, when compared to the baseline scan. †Mixed; otherwise referred to as part solid.

2 The LDCT acquisition parameters should be used both for annual screening LDCT exams and for interim LDCTs recommended to evaluate positive screens. The former are considered screening CTs by CPT code, and the latter are considered diagnostic CTs by CPT code.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
RISKS

• Futile detection of small aggressive tumors or indolent disease
• Quality of life
 ․ Anxiety of test findings
• Physical complications from diagnostic workup
• False-positive results
• False-negative results
• Unnecessary testing and procedures
• Radiation exposure
• Cost
• Incidental lesions

BENEFITS

• Decreased lung cancer mortality\(^1\)
• Quality of life
 ․ Reduction in disease-related morbidity
 ․ Reduction in treatment-related morbidity
 ․ Improvement in healthy lifestyles
 ․ Reduction in anxiety/psychosocial burden
• Discovery of other significant occult health risks (eg, thyroid nodule, severe but silent coronary artery disease, early renal cancer in upper pole of kidney, aortic aneurysm, breast cancer)

RISKS/BENEFITS OF LUNG CANCER SCREENING

*See Discussion for more detailed information.

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

Table of Contents

Overview MS-2

Literature Search Criteria and Guidelines Update Methodology MS-3

LDCT as Part of a Lung Screening Program MS-3

Randomized Trials MS-3

Lung Cancer Screening Guidelines MS-4

Risk Factors for Lung Cancer ... MS-5

Tobacco Smoke .. MS-5

Occupational Exposure to Carcinogens .. MS-6

Residential Radon Exposure.. MS-6

History of Cancer ... MS-6

Family History of Lung Cancer .. MS-7

History of Lung Disease .. MS-7

Hormone Replacement Therapy .. MS-8

Selection of Individuals for Lung Screening... MS-8

Individuals with High-Risk Factors .. MS-8

Individuals with Moderate-Risk Factors ... MS-10

Individuals with Low-Risk Factors .. MS-10

Accuracy of LDCT Protocols and Imaging Modalities MS-10

Multiple Nonsolid Nodules ... MS-14

Benefits and Risks of Lung Cancer Screening .. MS-15

Benefits of Lung Cancer Screening .. MS-15

Risks of Lung Cancer Screening ... MS-19

Cost-Effectiveness and Cost-Benefit Analyses ... MS-23

Shared Decision-Making .. MS-24

Summary .. MS-25

Table 1: Comparison of the I-ELCAP and NLST Lung Screening Protocols..... MS-27

References .. MS-27

Overview

Lung cancer is the leading cause of cancer-related mortality in the United States and worldwide.\cite{1-5} In 2018, it is estimated that 154,050 deaths (83,550 in men and 70,500 in women) from lung cancer will occur in the United States.\cite{6} Five-year survival rates for lung cancer are only 18%, partly because most patients have advanced-stage lung cancer at initial diagnosis.\cite{7} These facts—combined with the success of screening in improving outcomes in patients with cervical, colon, and breast cancers—have been the impetus for studies to develop an effective lung cancer screening test.\cite{8-10} Ideally, effective screening will lead to earlier detection of lung cancer (before patients have symptoms and when treatment is more likely to be effective) and will decrease mortality.\cite{11} Currently, most lung cancer is diagnosed clinically when patients present with symptoms such as persistent cough, pain, and weight loss; unfortunately, patients with these symptoms usually have advanced lung cancer. Early detection of lung cancer is an important opportunity for decreasing mortality. Considerable interest has been shown in developing screening tools to detect early-stage lung cancer. Data support using low-dose computed tomography (LDCT) of the chest to screen select patients who are at high risk for lung cancer.\cite{11-15} Chest x-ray is not recommended for lung cancer screening.\cite{11,16,17}

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Lung Cancer Screening were developed in 2011 and have been subsequently updated at least once every year.\cite{11,18,19} These NCCN Guidelines®: 1) describe risk factors for lung cancer; 2) recommend criteria for selecting individuals with high-risk factors for screening; 3) provide recommendations for evaluation and follow-up of lung nodules found during screening; 4) discuss the accuracy of chest LDCT screening protocols and imaging modalities; and 5) discuss the benefits and risks of LDCT screening. The Summary of the Guidelines Updates section in the algorithm briefly describes the new changes for 2018 (see the NCCN Guidelines for Lung Cancer Screening). For example, the NCCN cutoff thresholds for solid, part solid, and nonsolid nodules have been rounded to the nearest whole number to harmonize with the Lung Imaging Reporting and Data System (Lung-RADS) cutoffs.\cite{20-22}

Adenocarcinoma is the most common type of non-small cell lung cancer (NSCLC).\cite{7,23} Thus, these NCCN Guidelines for Lung Cancer Screening mainly refer to detection of adenocarcinoma. Other types of cancer can metastasize to the lungs, such as breast cancer. There are also less common cancers of the lung or chest, such as malignant pleural mesothelioma and thymic carcinoma. Lung screening may also detect noncancerous conditions of the thorax (eg, aortic aneurysm, coronary artery calcification), tumors or benign disease outside of the chest (eg, renal cell carcinoma, adrenal adenoma), and infections (eg, tuberculosis, sarcoidosis).\cite{24,25}

The goal of screening is to detect disease at a stage when it is not causing symptoms and when treatment will be most successful. Screening should benefit the individual by increasing life expectancy and increasing quality of life. The rate of false-positive results should be low to prevent unnecessary additional testing. The large fraction of the population without the disease should not be harmed (low risk), and the screening test should not be so expensive that it places an onerous burden on the health care system. Thus, the screening test should: 1) improve outcomes; 2) be scientifically validated (eg, have acceptable levels of sensitivity and specificity); and 3) be low risk, reproducible, accessible, and cost-effective.

Perhaps the most difficult aspect of lung cancer screening is addressing the moral obligation. As part of the Hippocratic oath, physicians promise

Version 3.2018, 01/18/18 © National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
to first do no harm. The dilemma is that if lung cancer screening is beneficial but physicians do not use it, they are denying patients effective care. If lung cancer screening is not effective, then patients may be harmed from overdiagnosis, increased testing, invasive testing or procedures, and the anxiety of a potential cancer diagnosis.

Literature Search Criteria and Guidelines Update Methodology

An electronic search of the PubMed database was performed to obtain key literature in lung cancer screening using the following search terms: lung cancer screening computed tomography, low-dose computed tomography, low-dose CT screening, and LungRADS. The PubMed database was chosen, because it is the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature. The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase 2; Clinical Trial, Phase 3; Clinical Trial, Phase 4; Guideline; Meta-Analysis; Randomized Controlled Trial; Systematic Reviews; and Validation Studies.

The data from key PubMed articles selected by the NCCN Panel for review during the NCCN Guidelines update meeting, as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the NCCN Panel, have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). If high-level evidence is lacking, recommendations are based on the panel’s review of lower-level evidence and expert opinion. The complete details of the development and update of the NCCN Guidelines are available on the NCCN webpage.

LDCT as Part of a Lung Screening Program

Lung cancer screening with LDCT should be part of a program of care and should not be performed in isolation as a free-standing test.

Trained personnel and an organized administrative system to contact patients for achieve compliance with recommended follow-up studies are required for an effective lung screening program. The NCCN-recommended follow-up intervals assume compliance with follow-up recommendations. To help ensure good image quality, all chest LDCT screening programs should use CT scanners that meet the standards of the American College of Radiology (ACR). The ACR has developed Lung-RADS to standardize the reporting and management from LDCT lung examinations. The Lung-RADS protocol has been shown to improve the detection of lung cancer and to decrease the false-positive rate.

When assessing scans, the most important radiologic factor is change or stability of nodules when compared with a previous imaging study. Given the high percentage of false-positive results and the downstream management that ensues for many patients, the risks and benefits of lung cancer screening should be discussed with the individual before a screening LDCT scan is performed. Shared patient/physician decision-making may be the best approach before deciding whether to do LDCT lung screening, especially for patients with comorbid conditions. It is recommended that institutions performing lung cancer screening use a multidisciplinary approach that may include specialties such as chest radiology, pulmonary medicine, and thoracic surgery. Guidelines from the American College of Chest Physicians (ACCP) and ASCO state that only centers with considerable expertise in lung cancer screening should do LDCT.

Randomized Trials

Disease-specific mortality, which is the number of cancer deaths relative to the number of individuals screened, is considered the ultimate test of screening effectiveness and is the only test that is
without bias. Randomized controlled screening trials are essential for determining whether cancer screening decreases disease-specific mortality. Nonrandomized trials are subject to biases that may cause an apparent increase in survival (e.g., lead-time bias, length-time bias). If lung cancer is detected through screening before symptoms occur, then the lead time in diagnosis equals the length of time between screening detection and when the diagnosis otherwise would have occurred, either as a result of symptoms or other imaging. Even if early treatment had no benefit, the survival of the screened person is increased simply by the addition of the lead time. Length-time bias refers to the tendency of the screening test to detect cancers that take longer to become symptomatic, possibly because they are slower-growing and perhaps are indolent cancers. Survival (the number of individuals who are alive after detection and treatment of disease relative to the number of individuals diagnosed with the disease) has often been reported but is subject to these biases. For further discussion of randomized and nonrandomized screening trials, see Benefits of Lung Cancer Screening in this Discussion.

Several randomized trials have assessed whether screening with chest radiography could improve lung cancer survival. Many of these studies were flawed in their design or power, and all were negative. A phase 3 randomized trial (The Prostate, Lung, Colorectal, and Ovarian [PLCO]) reported that annual screening with chest radiography is not useful for lung cancer screening in individuals at low risk for lung cancer. Other studies have focused on the more sensitive modality of LDCT–based lung cancer screening (see Benefits of Lung Cancer Screening in this Discussion). Analyses of some lung cancer screening studies using LDCT scans suggest that overdiagnosis (i.e., diagnosis of cancer that would never be life-threatening) and false-positive screening tests are significant concerns. Although LDCT scanning may be a better screening test for lung cancer, it also has limitations (see Benefits of Lung Cancer Screening and Risks of Lung Cancer Screening in this Discussion).

Multiple randomized trials are assessing LDCT screening for lung cancer among high-risk groups, including: 1) the National Lung Screening Trial (NLST), sponsored by the NCI; 2) the Dutch-Belgian randomized lung cancer screening trial (NELSON); 3) the UK Lung Screen (UKLS); 4) the Danish Lung Cancer Screening Trial; and 5) Detection And screening of early lung cancer with Novel imaging Technology (DANTE) trial. The published results from the NLST show that LDCT decreased the relative risk (RR) of death from lung cancer by 20% (95% CI, 6.8–26.7; \(P = .004 \)) when compared with chest radiography alone. Although the NLST also reported a significant decrease in all-cause mortality of 7%, the apparent decrease is not significant after lung cancer mortality has been subtracted. Several smaller trials have reported that screening with LDCT did not decrease mortality.

Lung Cancer Screening Guidelines

NCCN was the first major organization to develop lung cancer screening guidelines using LDCT based on the NLST data. The International Association for the Study of Lung Cancer (IASLC) supports the NCCN Guidelines by emphasizing the need for guidelines, a multidisciplinary team approach, and integrated smoking cessation programs. The U.S. Preventive Services Task Force (USPSTF) recommends lung screening with LDCT; their B recommendation means that lung screening is covered under the Affordable Care Act for individuals with high-risk factors who are 55 to 80 years of age. The Centers for Medicare & Medicaid Services (CMS) covers annual screening LDCT for appropriate Medicare beneficiaries at high risk for...
lung cancer (ie, smokers and former smokers ages 55–77 years with a 30 pack-year smoking history) if they also receive counseling and participate in shared decision-making before screening. ACCP and ASCO also recommend lung cancer screening with LDCT for individuals at high risk if they meet the criteria of the NLST (ie, smokers and former smokers ages 55–74 years with a 30 pack-year smoking history); this recommendation has also been approved by the American Thoracic Society. Several organizations also emphasize the need for a multidisciplinary team approach and smoking cessation. The American Cancer Society, American Association for Thoracic Surgery, and USPSTF have also developed guidelines for lung cancer screening with LDCT.

Risk Factors for Lung Cancer

An essential goal of any lung cancer screening protocol is to identify the populations that are at a high risk for developing the disease. Although smoking tobacco is a well-established risk factor for lung cancer, other environmental and genetic factors also seem to increase risk. This section reviews the currently known risk factors for the development of lung cancer to identify populations with high-risk factors that should be targeted for screening. Note that individuals with high-risk factors who are candidates for screening should not have any symptoms suggestive of lung cancer (eg, cough, pain, weight loss).

Tobacco Smoke

Active Tobacco Use

Tobacco smoking is a major modifiable risk factor in the development of lung cancer and accounts for 85% of all lung cancer-related deaths. Approximately 36.5 million U.S. adults currently smoke cigarettes. Smoking tobacco is also associated with other cancers and diseases, such as kidney, bladder, pancreatic, gastric, or cervical cancer or acute myeloid leukemia. It is estimated that about 443,000 U.S. adults die from smoking-related illnesses each year; cigarette smoking is estimated to cause about 30% of deaths due to cancer. Globally, it is estimated that deaths from smoking tobacco will increase to 10 million by 2020. The causal relationship between tobacco smoking and lung cancer was first reported in 1939. Since then, the risk of developing lung cancer from smoking tobacco has been firmly established.

Tobacco smoke contains more than 7000 compounds, and more than 50 of these are known carcinogens that increase the risk of cancerous mutations at the cellular level, especially among individuals with a genetic predisposition. The FDA has defined a list of 93 chemicals that are considered harmful and potentially harmful constituents (HPHCs) in tobacco products or tobacco smoke.

A dose–response relationship exists between smoking tobacco and the risk of developing lung cancer; however, there is no risk-free level of tobacco exposure. The RR for lung cancer is approximately 20-fold higher for smokers than for nonsmokers. Cessation of tobacco smoking decreases the risk for lung cancer. But, even former smokers have a higher risk for lung cancer compared with never-smokers. As a result, current or past history of tobacco smoking is considered a risk factor for the development of lung cancer, irrespective of the magnitude of exposure and the time since smoking cessation. In the NCCN Guidelines, individuals aged 55 to 74 years with a 30 or more pack-year history of smoking tobacco are selected as the highest-risk group for lung cancer and are recommended for LDCT screening (category 1) based on criteria for entry into the NLST (see Risk Status in the NCCN Guidelines for Lung Cancer Screening).
every day multiplied by the number of years of smoking. Note that data for determining whether patients are at high risk for cancer are based on cigarette smoking and not on other kinds of tobacco products, which may also put patients at risk for cancer. For those who smoke cigars, information is available that may be useful for determining the risk for cancer.

Exposure to Second-Hand Smoke

The relationship between lung cancer and exposure to second-hand smoke (also known as *environmental tobacco smoke*, *passive smoke*, and *involuntary smoke*) was first suggested in epidemiologic studies published in 1981. Since then, several studies and pooled RR estimates have suggested that second-hand smoke causally increases the risk for lung cancer among nonsmokers. The NCCN Panel does not feel that second-hand smoke is an independent risk factor, because the association is either weak or variable (see the NCCN Guidelines for Lung Cancer Screening). Second-hand smoke does not confer a great enough risk for exposed individuals to be candidates for lung cancer screening in the NCCN Guidelines.

A pooled analysis of 37 published studies found an estimated RR of 1.24 (95% CI, 1.13–1.36) for adult nonsmokers who live with a smoker. A pooled estimate from 25 studies found an RR of 1.22 (95% CI, 1.13–1.33) for lung cancer risk from exposure to second-hand smoke at the workplace. The pooled estimate for 6 studies suggests a dose–response relationship between number of years of second-hand smoke exposure and lung cancer risk. The data are inconsistent for second-hand smoke exposure during childhood and subsequent lung cancer risk in adulthood. For childhood tobacco smoke exposure, pooled RR estimates for the development of lung cancer were 0.93 (95% CI, 0.81–1.07) for studies conducted in the United States, 0.81 (95% CI, 0.71–0.92) for studies conducted in European countries, and 1.59 (95% CI, 1.18–2.15) for studies conducted in Asian countries.

Occupational Exposure to Carcinogens

Approximately 150 agents are classified as known or probable human carcinogens (IARC 2002). Agents that are identified specifically as carcinogens targeting the lungs include arsenic, chromium, asbestos, nickel, cadmium, beryllium, silica, diesel fumes, coal smoke, and soot. The calculated mean RR for development of lung cancer is 1.59 for individuals in the United States who have a known occupational exposure to these agents. Among those who are exposed to these carcinogens, data suggest that smokers have a greater risk for lung cancer than nonsmokers.

Residential Radon Exposure

Radon (a gaseous decay product of uranium-238 and radium-226) has been implicated in the development of lung cancer. The risk for lung cancer from occupational exposure among uranium miners is well established. The risk associated with residential radon is uncertain. A meta-analysis in 1997 of 8 studies yielded an estimated RR of 1.14 (95% CI, 1.0–1.3). A 2005 meta-analysis of 13 studies (using individual data from patients) reported a linear relationship between the amount of radon detected in a home and the risk of developing lung cancer. Among those exposed to radon, smokers have a greater risk for lung cancer than nonsmokers. The NCCN Panel feels that radon is a risk factor if there is a documented sustained and substantially elevated radon exposure.

History of Cancer

Evidence shows an increased risk for new primary lung cancers among patients who survive lung cancer, lymphomas, cancers of the head and
neck, or smoking-related cancers, such as bladder cancer. Patients who survive small cell lung cancer have a 3.5-fold increase in the risk for developing a new primary cancer, predominantly NSCLC. Risk for second lung cancers is increased if survivors continue smoking.

The risk for subsequent lung cancers is increased in patients who continue to smoke and who have been previously treated with either chest irradiation or alkylating agents. Patients previously treated with chest irradiation have a 13-fold increase in risk for developing new primary lung cancer, and those previously treated with alkylating agents have an estimated RR of 9.4. In patients previously treated for Hodgkin’s lymphoma, the RR for new primary lung cancer is 4.2 if previously treated with alkylating agents, and 5.9 if previously treated with 5 Gy or more of radiation therapy.

In patients with head and neck cancers, subsequent new primary lung cancer may occur synchronously or metachronously. New primary tumors are seen in approximately 9% of patients. Most of these tend to be squamous cell cancers and a third of them occur in the lung. In patients with laryngeal or hypopharyngeal cancer, the lung is the most common site of second primary cancers. Evidence suggests that patients who are successfully treated (ie, cured) for an initial smoking-related lung cancer and who stop smoking will have a decreased risk for a subsequent smoking-related cancer compared with those who continue smoking.

Family History of Lung Cancer

Several studies have suggested an increased risk for lung cancer among first-degree relatives of patients with lung cancer, even after adjustment for age, gender, and smoking habits. A meta-analysis of 28 case-control studies and 17 observational cohort studies showed an RR of 1.8 (95% CI, 1.6–2.0) for individuals with a sibling/parent or a first-degree relative with lung cancer. The risk is greater in individuals with multiple affected family members or who had a cancer diagnosis at a young age.

Although no high-penetration inherited syndrome has been described for lung cancer (either small cell lung cancer or NSCLC), several groups have identified genetic loci that may be associated with an increased risk of developing lung cancer. The Genetic Epidemiology of Lung Cancer Consortium conducted a genome-wide linkage analysis of 52 families who had several first-degree relatives with lung cancer. Linkage disequilibrium was shown on chromosome 6, localizing a susceptibility locus influencing lung cancer risk to 6q23-25. Subsequently, 3 groups performed genome-wide association studies in patients with lung cancer and matched controls. They found a locus at 15q24-25 associated with an increased risk for lung cancer, nicotine dependence, and peripheral artery disease. It was noted that subunits of the nicotinic acetylcholine receptor genes are localized to this area (CHRNA5, CHRNA3, and CHRNB4). Other investigators found that a variant at 15q24-25 is associated with spirometric bronchial obstruction and emphysema as assessed with CT. Patients with classic familial cancer susceptibility syndromes (such as retinoblastoma and Li-Fraumeni syndrome) have a substantially increased risk for lung cancer if they also smoke tobacco.

History of Lung Disease

Chronic Obstructive Pulmonary Disease

A history of chronic obstructive pulmonary disease (COPD) is associated with lung cancer risk, and this association may be largely caused by smoking. Yang et al found that COPD is associated with 12% of lung cancer cases among heavy smokers. Data suggest that lower pack-year thresholds may be useful to trigger LDCT screening in individuals with COPD. Even after statistical adjustment,
evidence suggests that the association between COPD and lung cancer may not be entirely caused by smoking. For example, 1) family history of chronic bronchitis and emphysema is associated with increased risk for lung cancer; 2) COPD is associated with lung cancer among never-smokers; and 3) COPD appears to be an independent risk factor for lung cancer. Yang et al found that COPD accounts for 10% of lung cancer cases among never-smokers. Koshiol et al found that when they restricted their analyses to adenocarcinoma (which is more common among nonsmokers, particularly women), COPD was still associated with an increased risk for lung cancer.

Pulmonary Fibrosis

Patients with diffuse pulmonary fibrosis seem to be at a higher risk for lung cancer even after age, gender, and a history of smoking are taken into consideration (RR, 8.25; 95% CI, 4.7–11.48). Among patients with a history of exposure to asbestos, those who develop interstitial fibrosis are at a higher risk of developing lung cancer than those without fibrosis.

Hormone Replacement Therapy

Whether use of hormone replacement therapy (HRT) affects the risk for lung cancer in women is currently unclear. More than 20 studies have been published and the results have been inconsistent. Most of the currently available information comes from case-control and cohort studies. Cumulatively, these studies are variable; they have found associations ranging from an increased risk of lung cancer, no effect on risk, and a protective effect against lung cancer risk. In a large randomized controlled study, no increase in the incidence of lung cancer was found among postmenopausal women treated with estrogen plus progestin HRT, but deaths from lung cancer (especially NSCLC) were higher among patients receiving HRT.

Selection of Individuals for Lung Screening

Well-known risk factors exist for the development of lung cancer, especially smoking tobacco. Results from the NLST support screening select individuals who are at high risk for lung cancer. The NCCN Panel recommends that individuals at high risk for lung cancer should be screened using LDCT; individuals at moderate or low risk should not be screened. Patients are selected for the different risk categories using the NLST inclusion criteria, nonrandomized studies, and/or observational studies. Screening with LDCT should only be recommended for select individuals at high risk if they are potential candidates for definitive treatment (ie, curative intent therapy). Chest radiography is not recommended for lung cancer screening.

Based on the available data, the NCCN Panel recommends using the following criteria to determine whether individuals are at high, moderate, or low risk for lung cancer.

Individuals with High-Risk Factors

The NCCN Panel recommends lung cancer screening using LDCT for individuals with high-risk factors (see Risk Status in the NCCN Guidelines for Lung Cancer Screening). There are 2 groups of individuals who qualify as high risk:

- **Group 1:** Individuals age 55 to 74 years with a 30 or more pack-year history of smoking tobacco who currently smoke or, if former smoker, have quit within 15 years (category 1). Initial screening with LDCT is a category 1 recommendation for group 1, because these individuals are selected based on the NLST inclusion criteria. An NCCN category 1 recommendation is based on high-level evidence (eg, randomized controlled trial) and uniform consensus among panel members. Annual screening LDCT is recommended for...
these individuals with high-risk factors based on the NLST. Annual screening LDCT is also recommended for those at high risk with negative LDCT scans or for those whose nodules do not meet the size cutoff for more frequent scanning or other intervention until individuals are no longer candidates for definitive treatment. Uncertainty exists about the appropriate duration of screening and the age at which screening is no longer appropriate.

- **Group 2:** Individuals age 50 years or older with a 20 or more pack-year history of smoking tobacco and with one additional risk factor (category 2A). Panel members expanded screening beyond the NLST criteria to a larger group of individuals at risk for lung cancer, which is described in greater detail in this section. LDCT screening is a category 2A recommendation for group 2 based on lower level evidence (eg, nonrandomized studies, observational data, ongoing randomized trials).

These additional risk factors were previously described and include personal history of cancer or lung disease, family history of lung cancer, radon exposure, and occupational exposure to carcinogens. Note that the NCCN Panel does not currently believe that exposure to second-hand smoke is an independent risk factor, because the data are either weak or variable (see *Exposure to Second-Hand Smoke* in this Discussion).

NCCN Panel Members feel that individuals in group 2 are also at high risk for lung cancer based on data from the NLST and other studies. The NCCN Panel feels that limiting use to the NLST criteria is arbitrary and naïve, because the NLST only used age and smoking history for inclusion criteria and did not consider other well-known risk factors for lung cancer. Others share this opinion. The NCCN Panel feels that it is important to expand screening beyond the NLST criteria to a larger group of individuals at risk for lung cancer. Using just the narrow NLST criteria—shown in group 1 of the NCCN high-risk categories (eg, individuals age 55–74 years with a 30 or more pack-year smoking history)—only 27% of patients currently being diagnosed with lung cancer would be candidates for LDCT screening. Data suggest that the lung cancer risk for individuals with a 20 to 29 pack-year smoking history is similar to that of individuals with a 30 or more pack-year history. Expanding the groups at high risk who are candidates for screening—for example, including individuals age 50 or more years with a 20 or more pack-year smoking history and one additional risk factor (other than second-hand smoke)—may save thousands of additional lives.

It is important to note that the NLST included both low- and high-risk individuals. Only 1% of the prevented deaths occurred among individuals whose risk was 0.55% or less; almost 90% of prevented deaths were observed among individuals with a baseline risk of at least 1.24%. The true risks and benefits of screening these group 2 individuals are uncertain. A risk calculator may be useful to assist in quantifying the risk for individuals in group 2 for use in a shared decision-making process. Individuals in group 2 may be considered at high risk if they have additional risk factors (other than second-hand smoke) that increase the lung cancer risk above a threshold of 1.3%.

In the NCCN Guidelines, the age range for LDCT was extended for individuals in group 2 (ie, ≥50 years and >74 years) for several reasons. NCCN Panel Members feel that younger and older individuals in group 2 are also at high risk for lung cancer based on data from the NLST and other studies. Three phase 3 randomized trials assessed screening in younger patients ages 50 to 55 years of age. The NELSON screening and UKLS trials assessed LDCT in individuals 50 to 75 years of age.
The Danish Lung Cancer Screening Trial (DLCST) screened individuals 50 to 70 years of age. Several studies have assessed LDCT using an extended age range of 50 to 85 years. It is uncertain what the age cutoff should be, where screening is no longer appropriate. The NCCN Guidelines acknowledge that select individuals with high-risk factors who are older than 74 years are also candidates for LDCT. At diagnosis of lung cancer, the median age of patients is 70 years. Approximately 54% of lung cancer is diagnosed in patients aged 55 to 74 years; about 27% of lung cancer is diagnosed in older patients aged 75 to 84 years. Screening may benefit older patients who are 75 to 84 years. The USPSTF recommends LDCT for individuals aged 55 to 80 years with high-risk factors. Similarly, the American Association for Thoracic Surgery recommends LDCT for individuals aged 55 to 79 years with high-risk factors. Annual screening LDCT seems reasonable for individuals older than 74 years with high-risk factors who are candidates for definitive treatment, generally defined as curative intent therapy (eg, surgery, chemoradiation, stereotactic body radiation therapy [SBRT]). Screening can be considered for individuals older than 74 years if they have good functional status, do not have serious comorbidities that would impede curative treatment, and are willing to undergo treatment.

For individuals at high risk with negative LDCT scans or those whose nodules do not meet the size cutoff for more frequent scanning or other intervention, the NCCN Guidelines suggest annual screening LDCT until individuals are no longer candidates for definitive treatment (see Risk Status in the NCCN Guidelines for Lung Cancer Screening). The appropriate duration of screening is uncertain. After the 3 rounds of LDCT in the NLST, new cases (367 cases) of lung cancer were frequently diagnosed during the 3.5 years of follow-up (median of 6.5 years). The NLST data show that lung cancer continues to occur over time in individuals with high-risk factors. In addition, the incidence of lung cancer and the death rate from lung cancer did not change during the 7 years of the NLST. Thus, the NLST data support annual screening LDCT for at least 2 years but do not define a time limit on efficacy.

Individuals with Moderate-Risk Factors
NCCN defines individuals with moderate-risk factors as those aged 50 years or older and with a 20 or more pack-year history of smoking tobacco or second-hand smoke exposure but no additional lung cancer risk factors. The NCCN Panel does not recommend lung cancer screening for these individuals at moderate risk for lung cancer. This is a category 2A recommendation based on nonrandomized studies and observational data. Of interest, data show that some patients in the moderate-risk group would benefit from lung cancer screening.

Individuals with Low-Risk Factors
NCCN defines individuals with low-risk factors as those younger than 50 years and/or with a smoking history of fewer than 20 pack-years. The NCCN Panel does not recommend lung cancer screening for these individuals at low risk for lung cancer. This is a category 2A recommendation based on nonrandomized studies and observational data.

Accuracy of LDCT Protocols and Imaging Modalities
As shown in the NCCN algorithm, LDCT is recommended for detecting noncalcified nodules that may be suspicious for lung cancer depending on their type and size (eg, solid, part-solid, and nonsolid nodules). Most noncalcified nodules are solid. Solid and subsolid nodules are the 2 main types of pulmonary nodules. Subsolid nodules include: 1) nonsolid nodules, also known as ground-glass opacities (GGOs) or ground-glass...
nodules (GGNs); and 2) part-solid nodules (also known as mixed nodules), which contain both ground-glass and solid components.172-176 Nonsolid nodules are mainly adenocarcinoma in situ (AIS) or minimally invasive adenocarcinoma (MIA), formerly known as bronchioloalveolar carcinoma (BAC); patients have 5-year disease-free survival rates of 100\% if these nonsolid nodules are completely resected.23,173-175,177-179 Data also suggest that many nonsolid nodules can resolve, although they need to be followed.45,180,181 Solid and part-solid nodules are more likely to be invasive and faster-growing cancers, factors that are reflected in the increased suspicion and follow-up of these nodules.24,182-184 Recent data suggest that long-term survival is excellent if part-solid nodules are resected.172 When assessing subsequent LDCT scans, the most important radiologic factor is change or stability of nodules compared with a previous imaging study.

Multidetector CT (MDCT) of the chest has made it possible to detect very small lung nodules, both benign and malignant. The ability to acquire thinner slices, the use of maximum intensity projection (MIP) or volume-rendered (VR) images, and computer-aided diagnosis (CAD) software have increased the sensitivity of small-nodule detection.185-199 The use of thinner images has also improved the characterization of small lung nodules.200

For lung cancer screening, LDCT without intravenous contrast is currently recommended (instead of standard-dose CT) to decrease the dose of radiation. Although there is no strict definition of LDCT of the chest, it is usually approximately 10\% to 30\% of standard-dose CT. In most cases, LDCT has been shown to be as accurate as standard-dose CT for detecting solid pulmonary nodules, although nodule detection with LDCT may be limited in larger patients.201,202 LDCT seems to be less sensitive for detecting very low-density nonsolid nodules or nonsolid nodules.203 Decreasing the radiation dose does not significantly affect the measurement of nodule size when using 1-mm thick slices.204 These low-dose scans require radiologists to assess images that are much noisier than typical scans.205 Studies suggest that some variation occurs in interpretation of LDCT scans among radiologists.206-212

LDCT lung cancer screening studies using MDCT have reported that lung cancer mortality is decreased when compared with unscreened cohorts or those receiving chest radiographs.11,213 Studies using multidetector LDCT screening for lung cancer in individuals with high-risk factors have applied various different protocol algorithms for detection and follow-up of pulmonary nodules/lesions.10,162,163,214-218 These protocols have been based on the positive relationships among: 1) nodule size and/or nodule consistency/density and likelihood of malignancy; 2) nodule size and tumor stage; and 3) tumor stage and survival. They also take into account the average growth rate of lung cancer (ie, doubling time).219-226 Most of these protocols recommend that dynamic contrast-enhanced CT and/or PET/CT be considered for nodules that are at least 7 to 10 mm, because these technologies have been shown to increase specificity for malignancy.25,227-233 PET has low sensitivity for nodules with less than 8 mm of solid component and for small nodules near the diaphragm. Patients who live in areas endemic for fungal disease may have granulomatous disease; the false-positive rate for PET/CT is higher for granulomas.234-236 If lung nodules have higher uptake on PET compared to the adjacent mediastinal blood pool (ie, hypermetabolism in the lung nodules), then the nodules are suspicious for malignancy, regardless of the standardized uptake value (SUV) analysis; note that comparison with the mediastinal blood pool was a revision made for the 2018 update (Version 3.2018).231,237 In the workup of pulmonary nodules detected with CT in a high-risk lung cancer screening population, the roles of contrast-enhanced CT and PET/CT are still in evolution.238,239 Solitary
pulmonary nodules pose unique challenges. Nodule risk calculators have been published, which may be helpful when assessing solitary pulmonary nodules. There is an increased risk of cancer if a nodule is located in the upper lobes. Geographic and other risk factors can influence the accuracy of nodule risk calculators.

Optimally, these lung cancer screening methods will increase detection of early-stage lung cancer and decrease false-positive results, unnecessary invasive procedures, radiation exposure, and cost. In at least one medical center, improvement in CT equipment and change in screening protocol have been shown to increase early lung cancer detection, decrease the surgery rate, and improve cancer-specific survival. Strict adherence to a screening protocol may also significantly reduce unnecessary biopsies. When a biopsy is recommended, tissue samples need to be adequate for both histology and molecular testing.

Currently, the most accurate protocol for lung cancer detection using LDCT is difficult to determine because of differing patient populations, methodologies, lengths of follow-up, and statistical analyses among lung cancer screening studies. LDCT screening programs (with multiple years of follow-up) report that 65% to 85% of their detected lung cancers are stage I. The I-ELCAP (International Early Lung Cancer Action Program) and NLST are the largest series examining lung cancer detection using LDCT in individuals with high-risk factors (see Benefits of Lung Cancer Screening in this Discussion). Differences in screening algorithms or recommended diagnostic pathways between these studies are summarized in Table 1. To help ensure good image quality, all LDCT screening programs should use CT scanners that meet quality standards equivalent to or exceeding the accreditation standards of the ACR.

The Fleischner Society has published guidelines for the management of small pulmonary nodules detected on LDCT scans. Most radiologists in the United States are aware of these guidelines and/or work in a practice that uses them. The Fleischner Society has also published guidelines for the management of part-solid or nonsolid pulmonary nodules. Because of the familiarity and/or acceptance of the Fleischner guidelines among radiologists, pulmonologists, and thoracic surgeons, these same principles have been incorporated into the NCCN recommendations for lung cancer screening. The NCCN recommendations in the algorithm are an adaptation of the Fleischner guidelines for solid and subsolid nodules, NLST data, I-ELCAP protocol guidelines, and LungRADS guidelines. Studies suggested that the definition of a positive result from an LDCT scan should be revised, because the original definition from the NLST was associated with a high percentage of false-positive results. In Version 1.2014 of the NCCN Guidelines, the cutoff sizes for assessing solid and part-solid lung nodules on initial LDCT screening recommended by NCCN and the ACR were increased to 6 mm in diameter rather than the 4 mm originally used in the NLST and in earlier versions of the NCCN Guidelines for Lung Cancer Screening.

The NCCN-recommended cutoff sizes for solid, part-solid, and nonsolid nodules detected on LDCT scans are shown in the algorithm (see the NCCN Guidelines for Lung Cancer Screening). The cutoff sizes differ for nodules detected on initial screening LDCT when compared with new or growing nodules detected on follow-up and annual screening LDCT scans. There is a higher degree of suspicion for new or growing nodules and hence lower cutoff sizes are used. If there is a high suspicion of lung cancer, recommendations include biopsy or surgical excision. For nodules of borderline concern, assessment with interval LDCT scans is often recommended to determine if the nodule is...
changing to a suspicious form by increasing in size and/or by having a new or growing solid component.

The ACR developed Lung-RADS to standardize LDCT lung examinations. Lung-RADS has been shown to improve the detection of lung cancer and to decrease the false-positive results to approximately 1 in 10 screened individuals compared with more than 1 in 4 in NLST. For subsequent LDCT scans after baseline, the false-positive result for Lung-RADS was also decreased when compared with NLST (5.3% [95% CI, 5.1%–5.5%] vs. 21.8% [95% CI, 21.4%–22.2%]). The NCCN Panel has harmonized Lung-RADS with the NCCN Guidelines for Lung Cancer Screening by revising the definitions of positive scans for initial screening, follow-up, and annual screening LDCT. For the Version 1.2018 update, the NCCN threshold cutoffs for solid, part-solid, and nonsolid nodules have been rounded to the nearest whole number to harmonize with the LungRADS cutoffs.

For solid or part-solid nodules, the NCCN definition of a positive initial screening scan is a nodule measuring 6 mm in mean diameter (see the NCCN Guidelines for Lung Cancer Screening). For nonsolid nodules, the NCCN definition of a positive initial screening scan is 20 mm in diameter; nodules of this size require a short-term follow-up LDCT scan in 6 months to assess for malignancy. Specific recommendations for other types of nodules, other size ranges, and different types of LDCT scans (ie, initial, follow-up, annual) are provided in the NCCN Guidelines. For example, an immediate chest CT with or without contrast and/or PET/CT is recommended to assess for malignancy for the following nodules detected on an initial screening LDCT: 1) solid nodules of 15 mm or more; and 2) part-solid nodules with a solid component of 8 mm or more.

If a new or growing nodule is detected on follow-up interim scans or subsequent annual screening LDCT scans, the definition of a positive scan is different because these nodules are associated with higher risk. If a new solid nodule is detected on follow-up or subsequent annual screening LDCT scans, the cutoff threshold is decreased to 4 mm (see the NCCN Guidelines for Lung Cancer Screening). For new part-solid nodules with a solid component of 4 mm, an immediate chest CT with or without contrast and/or PET/CT is recommended to assess for malignancy. Again, if a new or growing nonsolid nodule is detected on follow-up interim scans or subsequent annual LDCT scans, follow-up recommendations are different (see the NCCN Guidelines for Lung Cancer Screening). Nodules should be measured on lung windows and reported as the average diameter rounded to the nearest whole number; only a single diameter measurement is necessary for round nodules. The NCCN Guidelines emphasize that nonsolid lesions must be evaluated using thin slices (<1.5 mm) to increase the sensitivity for a solid component and to detect subtle changes over time.

In LungRads, growth is defined as an increase in size of >1.5 mm. Mean diameter is the mean of the longest diameter of the nodule and its perpendicular diameter. This definition of nodule growth is based on intraobserver and interobserver variability when measuring small pulmonary nodules, and on the minimum change in diameter that can be reliably detected using conventional methods (excluding volumetric analysis software). This definition of nodule growth is simplified compared with the formula used by I-ELCAP (see Table 1), which requires nodule growth of 1.5 to 3.0 mm in mean diameter for nodules 3 to 15 mm, depending on their diameter. The NCCN definition of nodule growth should also result in fewer false-positive diagnoses compared with the NLST suggested definition of nodule growth (≥10% increase in nodule diameter).
Currently, the NCCN recommendations for lung screening do not include other possibly relevant nodule features, such as proximity to the pleura or fissure.257-260 The topics of nodule volumetric analysis and/or calculations of tumor doubling time have not been addressed either.152,261 The NELSON trial is using volumetric analysis, which has decreased the false-positive rate to 64%; the NLST had a false-positive rate of 96%.42,61,64,214 Only 2.6% of individuals had a positive initial test result in the NELSON trial compared with 24% in the NLST. In some cases, it may be appropriate to perform standard-dose CT with or without intravenous contrast for follow-up or further evaluation of lung or mediastinal abnormalities detected on screening LDCT. Note that if endobronchial nodules are suspected, then LDCT is recommended after 1 month (see \textit{Follow-up of Screening Findings} in the NCCN Guidelines for Lung Cancer Screening). The technician should ask the patient to cough vigorously, then the LDCT should be immediately done. If findings suggest infection or inflammation, a follow-up LDCT is suggested in 1 to 3 months.

A table on recommended LDCT acquisition parameters is included in the algorithm (see \textit{Low-Dose Computed Tomography Acquisition, Storage, Interpretation, and Nodule Reporting} in the NCCN Guidelines for Lung Cancer Screening). Use of MIP, VR, and/or CAD software is highly recommended in addition to evaluation of conventional axial images for increased sensitivity of small nodule detection. A detector collimation of 1.5 mm or less is necessary for optimal use of these 3-dimensional applications. For accurate nodule volumetric analysis, some radiologists feel that a detector collimation of 1 mm or less is needed. Measurement and evaluation of small nodules are more accurate and consistent on 1-mm thick images compared with 5-mm images.200 There may be a similar but less-pronounced benefit in evaluating nodules on 1-mm reconstructed images after detecting them on 2.5- to 3.0-mm thick slices.

The preferred slice width is 1 mm or less, and the acceptable slice width is 2.5 mm or less based on Lung-RADS.22,36,174,190 Nonsolid lesions must be evaluated at thin slices (<1.5 mm) to exclude solid components.174 Part-solid nodules have higher malignancy rates than either solid nodules or pure nonsolid nodules and, therefore, require rigorous evaluation.174 Because slice thickness, reconstruction algorithms, and postprocessing filters affect nodule size measurement, the same technical parameters should be used for each screening LDCT (eg, the same window/width and window/level settings).205,262 Ultra-low-dose chest CT currently produces lower sensitivity for nodule detection, especially in larger patients.202 New LDCT technologies may make it possible to significantly decrease the radiation dose without compromising nodule detection and evaluation.263-266 Some organizations, including the ACR, recommend using CT dose tracking for all CT screening programs to ensure that screening facilities are adhering to acceptable radiation limits (eg, reporting the dose-length product [DLP] for each CT).267

Multiple Nonsolid Nodules

As previously mentioned, subsolid nodules include 1) nonsolid nodules (also known as GGOs or GGNs); and 2) part-solid nodules (also known as mixed nodules), which contain both ground-glass and solid components.173-176 Subsolid nodules may contain part-solid or solid components, which increase the possibility of malignancy. When multiple subsolid nodules occur, the dominant lesion should be assessed.24 Careful assessment is needed to determine whether patients have: 1) a malignant nodule and several benign nodules; 2) several synchronous lung cancers; or 3) dominant malignant nodule
with metastases. Multiple nodules may also be due to inflammation or infection, especially if they are rapidly expanding in size.

The following increase the degree of suspicion that nonsolid or part-solid nodules may be malignant: 1) part-solid nodules with solid components larger than 5 mm; 2) pure nonsolid nodules larger than 10 mm; 3) atypical subsolid nodules with spiculated contours, bubbly appearance, or reticulation; 4) pure nonsolid nodules or part-solid nodules with solid components smaller than 5 mm that show interval change in size or attenuation; or 5) solid lesions with characteristics that are suspicious for invasive carcinoma. All nonsolid nodules should be reviewed at thin (<1.5 mm) slices to exclude any solid components. If the nodule contains any solid components, then the nodule should be managed using the recommendations from the NCCN Panel for part-solid nodules (see Follow-up of Screening Findings in the NCCN Guidelines for Lung Cancer Screening).

Benefits of Lung Cancer Screening

This section summarizes current information about the possible or projected benefits of screening for lung cancer using LDCT scans, including: 1) decreased lung cancer mortality, or improvement in other oncologic outcomes; 2) quality-of-life benefits from screening and early detection of cancer (compared with standard clinical detection); and 3) detection of disease, other than lung cancer, that requires treatment. Effective lung screening may prevent more than 12,000 premature lung cancer deaths per year. Other occult health risks may be identified such as thyroid nodules, COPD, moderate to severe coronary artery calcification, aortic aneurysm, other cancers (e.g., breast cancer, renal cancer), and other conditions.

Oncology Outcomes

After a clinical diagnosis of NSCLC, survival is directly related to stage at diagnosis. Although patients with earliest-stage disease (IA) may have a 5-year survival rate of approximately 75% with surgery, the outcomes quickly decrease with increasing stage (e.g., 5-year survival is 71% for stage IB; 58% for IIA; 49% for IIB; and <25% for stages III and IV). Note that current staging for NSCLC uses the 2010 AJCC staging system (7th edition) (see the NCCN Guidelines for Non-Small Cell Lung Cancer, available at www.NCCN.org). A new edition of the AJCC Cancer Staging Manual (8th edition) was published in late 2016 and will be effective for all cancer cases recorded on or after January 1, 2018. The NCCN Guidelines will use the AJCC (7th edition) staging system for lung cancer until January 1, 2018. Although it is intuitively appealing to conclude that earlier detection of disease will improve outcome, screen-detected lung cancers may have a different natural history from that of clinically detected cancers and an apparent improvement in survival from early detection itself (lead-time bias). Pathology results of resected lung cancers detected through prior...
screening trials suggest that screening increases the detection of indolent cancer. Randomized trial data from the NLST show that LDCT screening decreases lung cancer mortality.11

Nonrandomized Trials
Of the nonrandomized screening studies, the I-ELCAP study is the largest.47 It included 31,567 individuals with high-risk factors from around the world, all of whom were screened with baseline and annual screening LDCT scans analyzed centrally in New York.221 In the I-ELCAP study, Henschke et al221 reported that a high percentage of stage I cancers (85%) were detected using LDCT, with an estimated 92% actuarial 10-year survival rate for stage I cancers resected within 1 month of diagnosis (62% of all cancers detected). Three participants with clinical stage I cancer—who opted not to undergo treatment—all died within 5 years, similar to other data examining the natural history of stage I NSCLC.286,287 The authors concluded that annual screening LDCT can detect lung cancer that is curable. Important caveats about the I-ELCAP study include that it was not randomized, the median follow-up time was only 40 months, and fewer than 20% of the subjects were observed for more than 5 years. Given the limited follow-up, the 10-year survival estimates may have been overstated.

A study by Bach et al288 raised concern that LDCT screening may lead to overdiagnosis of indolent cases without substantially decreasing the number of advanced cases or the overall attributable deaths from lung cancer. Although overdiagnosis did occur with LDCT in the NLST, the magnitude was not large when compared with radiographic screening (83 vs. 17 stage IA BAC, also known as AIS or MIA).11,23,168 An analysis of the NLST data stated that 18% of all lung cancers detected by LDCT seemed to be indolent.20 Data suggest that baseline CT scans find more indolent cancers, and subsequent annual scans find more rapidly growing cancers.12,13,53,289

Randomized Trials
To address the concerns of bias and overdiagnosis from nonrandomized screening studies, the NCI launched the NLST in 2002.10 The NLST was a prospective, randomized lung cancer screening trial comparing annual screening LDCT scans with annual chest radiographs for 2 years; this trial was designed to have 90% power to detect a 21% decrease in the primary endpoint of lung cancer-specific mortality in the screened group. The investigators enrolled 53,454 individuals aged 55 to 74 years who had smoking history of at least 30 pack-years. If subjects were no longer smoking tobacco, they had to have quit within the previous 15 years. The NLST results showed that annual screening LDCT decreased the RR of death from lung cancer by 20%.11

Overall, 24% of the LDCT scans and 7% of the chest radiographs performed were positive screens, an imbalance that was expected based on prior data. In each of the 3 rounds of screening, positive LDCT scan screens were determined to be actual lung cancer cases (ie, true-positive) 4%, 2%, and 5% of the time, compared with 6%, 4%, and 7% of the time for positive chest radiographs.

Based on the published NLST results, 356 participants died of lung cancer in the LDCT arm and 443 participants died of lung cancer in the chest radiograph arm.11 Thus, annual screening LDCT decreased the RR of death by 20%. These results are impressive, and the NLST represents the first randomized study showing an improvement in disease-specific mortality when using a lung cancer screening program.12 The NLST results indicate that to prevent one death from lung cancer, 320 individuals with high-risk factors must be screened with LDCT. The NLST results will likely change medical practice in the United States. A combined analysis of the NELSON and other European trials may confirm the NLST findings.55,61,62
Some feel that the 20% reduction in mortality from LDCT screening (compared with chest radiography) may actually be greater in clinical practice, because the observed mortality reduction underestimates the true reduction and because chest radiographs are not currently recommended for lung cancer screening as standard practice.242,290,291 In stop screening trials, such as the NLST, deaths during prolonged follow-up may have been prevented if screening had been continued.290 Thus, if annual lung screening is continued for more than 2 years, this increased screening may yield mortality reductions of more than 20% (which was reported by the NLST after annual lung screening for only 2 years). Findings suggest that showing the benefit of breast cancer screening requires follow-up of at least 20 years.292 Others feel that the mortality benefit from screening for lung cancer with LDCT will vary substantially across patients who differ in their baseline risk of developing lung cancer.293 Smaller randomized trials, such as the MILD and DLSCF trials, have not reported that LDCT screening decreases mortality.161,294 The MILD trial was underpowered to detect a difference in mortality.45,294

Approximately 8.6 million individuals were eligible for LDCT lung screening in 2010 using the NLST definitions of high risk. It was estimated that 12,250 deaths would be averted if these high-risk individuals received LDCT screening.277 If NCCN group 2 criteria were also used to identify high-risk individuals, then an additional 2 million individuals would also receive lung screening. An additional 3000 deaths would be averted.150

Quality of Life

The NLST assessed quality of life among participants at the time of each annual screening study.295 Possible quality-of-life benefits from early lung cancer detection (as opposed to detection at the time of clinical symptoms) include: 1) reduction in disease-related morbidity; 2) reduction in treatment-related morbidity; 3) alterations in health affecting lifestyles; and 4) reduction in anxiety and psychological burden. Presumably, quality of life is also improved with negative LDCT findings, although the need for continued follow-up may increase anxiety.

Reduction in Disease-Related Morbidity

It is a reasonable assumption that the disease-related symptom burden would be decreased in patients whose lung cancer is detected early (via screening) compared with late (via clinical presentation). Most patients whose lung cancer is detected early are asymptomatic, and detection is often either incidental or part of a screening protocol.10 Historically, most patients with lung cancer presented with symptoms of the disease (including cough, dyspnea, hemoptysis, pain, weight loss, and cachexia), and thus their lung cancer was detected clinically. An important analysis of the NLST quality-of-life data will be to assess the 2 cohorts for differences in the types of symptoms experienced at the time of lung cancer diagnosis to see if screening truly can decrease the lung cancer symptom burden. In addition, lung cancer screening may identify other clinical conditions unrelated to lung cancer that require follow-up (eg, coronary artery calcification, COPD, other cancers); presumably, treatment of these other conditions will decrease the overall disease burden.11,24,296-299

Reduction in Treatment-Related Morbidity

Patients with early-stage lung cancer primarily are treated surgically, sometimes with adjuvant chemotherapy, whereas those with more advanced disease are treated with a combination of chemotherapy and radiation, or chemotherapy alone (see the NCCN Guidelines for Non-Small Cell Lung Cancer, available at www.NCCN.org).300,301 Patients with early-stage lung cancer who undergo an R0 resection have increased survival compared with those with more advanced disease who undergo definitive chemoradiation therapy.302 Few data...
have been published comparing the treatment burden of surgery versus chemoradiation therapy. It seems reasonable to assume that a patient with stage I lung cancer requiring a lobectomy alone (or SBRT, also known as stereotactic ablative radiotherapy [SABR]) probably has less treatment-related morbidity than a patient with stage III lung cancer requiring combined-modality therapy (ie, chemotherapy, radiation, possible lung resection). However, a difference in morbidity has not been shown.

The NLST found that 40% of the cancers detected in the CT-screening group were stage IA, 12% were stage IIIB, and 22% were stage IV. Conversely, 21% of the cancers detected in the chest radiograph group were stage IA, 13% were stage IIIB, and 36% were stage IV. These results suggest that LDCT screening decreases the number of cases of advanced lung cancer, and therefore may decrease treatment-related morbidity. Data from the NELSON and UKLS trials also suggest that CT screening detects more early-stage lung cancer.

Lung cancer screening may reduce the number of patients who require pneumonectomy for treatment of lung cancer, which will reduce treatment-related morbidity and mortality. Several series have shown that pneumonectomy is performed in only 1% of cases of lung cancer diagnosed in CT screening programs, in contrast to the 20% to 30% rate of pneumonectomy in symptom-detected cases.

Patients with early-stage lung cancer may be candidates for treatment that would not be appropriate for those with advanced stage disease. Video-assisted thorascopic surgery (VATS) is an option for patients with early-stage NSCLC (eg, those who may not tolerate or may refuse an open lobectomy). VATS lobectomy is associated with less morbidity than open lobectomy. Data suggest that SBRT is also a reasonable option for patients with early-stage lung cancer who are not candidates for surgery.

Alterations in Health That Affect Lifestyles
The process of lung cancer screening itself has been suggested to increase smoking cessation rates. Conversely, it has also been suggested that negative results on a lung cancer screening test may provide a false sense of security to smokers and result in higher smoking rates. Neither hypothesis has been supported by any substantial evidence. Studies suggest that smoking cessation rates were higher when more follow-up LDCT scans were ordered for abnormal findings, regardless of ultimate diagnosis of cancer, suggesting that patients became scared into quitting. In a controlled study, smoking abstinence rates were similarly higher than expected in both screened and unscreened arms. This result suggests that the positive effect on smoking cessation was likely unrelated to the screening test results and may reflect a higher desire to be healthy among volunteers participating in screening clinical trials. A study in more than 1400 individuals reported that relapse rates were lower in patients with positive scans who had stopped smoking for 2 years or less.

Smokers, including those undergoing lung cancer screening, should always be encouraged to quit smoking tobacco (see the NCCN Guidelines for Smoking Cessation, available at www.NCCN.org). Likewise, former smokers should be encouraged to remain abstinent. Lung cancer screening is not a substitute for smoking cessation. Programs using behavioral counseling combined with medications that promote smoking cessation (approved by the FDA) can be very useful in helping individuals to quit smoking.

Reduction in Anxiety and Psychological Burden
Whether lung cancer screening causes anxiety or improves overall quality of life has been assessed in the NLST and NELSON trials. In the NLST trial, patients with either a false-positive result or significant
incidental finding did not report increased anxiety or differences in quality of life at 1 or 6 months after screening.295 In the NELSON trial, recipients of an indeterminate result from the LDCT scan experienced increased distress in the short term, whereas relief was experienced after a negative baseline screening examination.328 After 2 years of follow-up, data from the NELSON trial suggest that lung screening did not adversely affect quality of life.329 In the UKLS trial, screening was not associated with clinically significant long-term anxiety, depression, or distress in individuals at high risk for cancer.330 Further longitudinal studies are needed to determine the long-term effect. Patients' attitudes toward risk in their life (risk perception) also greatly affect their anxiety when undertaking cancer screening examinations.331 Little definitive research is available to support or refute effects on quality of life from lung cancer screening.

Risks of Lung Cancer Screening

Lung cancer screening with LDCT has inherent risks and benefits.28,29,43,168,332 These risks must be understood to determine whether screening is beneficial. The possible or projected risks of screening for lung cancer using LDCT scans include: 1) false-positive results, leading to unnecessary testing, unnecessary invasive procedures (including surgery), increased cost, and decreased quality of life because of mental anguish; 2) false-negative results, which may delay or prevent diagnosis and treatment because of a false sense of good health; 3) futile detection of small aggressive tumors (which have already metastasized, preventing meaningful survival benefit from screening); 4) futile detection of indolent disease (ie, overdiagnosis), which would never have harmed the patient who subsequently undergoes unnecessary therapy; 5) indeterminate results, leading to additional testing; 6) radiation exposure; and 7) physical complications from diagnostic workup. Patients with several comorbid conditions may be at greater risk than those with few or none.

False-Positive Results

Lung cancer screening studies (which have included only high-risk populations) have found a high rate of noncalcified nodules larger than 4 mm on LDCT screening, with false-positive rates ranging from 10% to 43%.164,307,333-336 In the NLST, the false-positive rate was 96.4% for the CT screening group.11 The cumulative risk of a false-positive result was 33% for a person undergoing lung cancer screening with 2 sequential annual examinations.333 Thus, LDCT had a high rate of sensitivity but a low rate of specificity in the NLST. These false-positive results in the NLST were probably due to benign intrapulmonary lymph nodes and noncalcified granulomas.11,25 Data from the NELSON trial show that using volumetric analysis decreases the false-positive rate.64,214 Use of the LungRADS protocol has been shown to decrease the false-positive rate and increase the detection of lung cancer.21,22,36

False-positive and indeterminate results require follow-up, which may include surveillance with chest LDCT scans, percutaneous needle biopsy, or even surgical biopsy. Each of these procedures has its own risks and potential harms.337 Approximately 7% of individuals with a false-positive result will undergo an invasive procedure (typically bronchoscopy).333 In the NLST, the rate of major complications after an invasive procedure was very low (only 0.06%) after workup for a false-positive result in the CT screening group.11

The NCCN recommendations for lung cancer screening may avoid much of the most invasive follow-up for noncalcified nodules that are detected on baseline screening with LDCT (see Screening Findings in the NCCN Guidelines for Lung Cancer Screening). The NCCN recommendations use the NLST and I-ELCAP.
protocols/recommendations (see Table 1) and the Fleischner Society guidelines and are based on expert opinion from NCCN Panel Members.11,174,184,338 Repeat chest LDCT scanning is associated with risk for: 1) increased radiation exposure; 2) increased cost of follow-up scans and clinic visits; and 3) ongoing anxiety to the individual, who must wait for the results of repeat chest LDCT scans.38,339

Bach et al288 also provide insight into the potential harms of LDCT screening, which results in a 3-fold increase in lung cancer diagnosis and a 10-fold increase in lung cancer surgery; this represents substantial psychological and physical burdens. Although the I-ELCAP investigators reported a surgical mortality rate of only 0.5\% (when surgery is performed by board-certified thoracic surgeons at cancer centers), the average surgical mortality rate for major lung surgery across the United States is 5\%, and the frequency of serious complications is greater than 20\%.340 These potential harms associated with thoracic surgery340-342 mandate that the effectiveness of LDCT screening be accurately assessed. Methods of decreasing potential harms with thoracic surgery include using treatment with less morbidity (eg, sublobar resection, VATS lobectomy, SBRT), using minimally invasive diagnostics (endobronchial ultrasound and navigational bronchoscopy), and using experienced, dedicated, multidisciplinary teams to minimize unnecessary testing and procedures and the morbidity of those procedures.

False-Negative Results

Sone et al343 published 2 reports on lung cancers missed at screening.344,345 Of the 88 lung cancers diagnosed, 32 were missed on 38 LDCT scans: 23 from detection errors (with a mean size of 9.8 mm) and 16 from interpretation errors (with a mean size of 15.9 mm). Detection errors included: 1) subtle lesions (91\%) appearing as nonsolid nodules; and 2) lesions (83\%) that were overlapped with, obscured by, or similar in appearance to normal structures (such as blood vessels). Interpretation errors (87\%) were seen in patients who had underlying lung disease, such as tuberculosis, emphysema, or fibrosis.242

The second report revealed that 84\% of missed cancers in that database were subsequently detected using an automated lung nodule detection method. The CAD method involved the use of gray-level thresholding techniques to identify 3-dimensionally contiguous structures within the lungs, which were possible nodule candidates. The problem is that CAD systems are not universally deployed, and the success of detecting disease can vary greatly among radiologists. The variability and success of CAD and volumetric analysis systems may also affect the success of screening trials. A database of lung nodules on CT scans provides an imaging resource for radiologists, which may help to decrease false-negative and false-positive results.187

Although these issues are partly being addressed through NCI-sponsored programs (such as the RIDER and PAR 08-225 programs), the range in variability at various centers, particularly outside of academic institutions, may lead to significant differences in results compared with those published from clinical trials. Variability occurs when assessing subsolid nodules.206-208 False-negative results from a screening test may provide an individual patient with a false sense of security, causing a patient to perhaps ignore symptoms that may have otherwise led to more evaluation.

Futile Detection of Small Aggressive Tumors

Early detection using lung cancer screening may not be beneficial if a small tumor is very aggressive and has already metastasized, with a loss of opportunity for effective treatment. Studies show that a 5-mm lung cancer has undergone approximately 20 doublings yielding \(10^8\) cells, whereas patient death typically occurs with a tumor burden of \(10^{12}\).
cells.346 Even small tumors may have already metastasized. Studies have also shown that metastases can occur at the time of angiogenesis, when lesions are approximately 1 to 2 mm.347

The NLST trial results show that lung cancer screening is effective in select individuals with high-risk factors.11 The data from this trial show that detecting and treating lung lesions lead to a reduction in lung cancer–specific mortality. Therefore, the likelihood of futile therapy in patients with screen-detected tumors is much less, albeit not zero. Because the natural history of lung cancer is heterogeneous and not completely predictable or linear,348 the potential remains for futile treatment in patients with an aggressive tumor that is already incurable at the time of screening diagnosis.

Futile Detection of Indolent Disease

Although lung cancer specialists generally have a strong opinion of the uniform fatality of untreated lung cancer, studies of some low-grade lung cancers (ie, AIS or MIA, formerly known as BAC) show a potential for prolonged survival in some patients with NSCLC, even without therapy.349,350 AIS and MIA, which are likely to present as nonsolid nodules, have a 100% 5-year disease-free survival rate if completely resected.23,349 A greater percentage of the lepidic pattern (formerly BAC pattern), which corresponds with the nonsolid component in a part-solid nodule, is correlated with a more favorable prognosis.23,349,350

Furthermore, experience in lung cancer screening has raised the question of increased identification of indolent tumors in the screened population, which is termed overdiagnosis.288,351 These indolent tumors may not cause symptoms or cancer mortality; therefore, patients do not benefit from screening and subsequent workup and treatment. A percentage of these patients will be exposed to the risk, morbidity, and mortality of surgical resection that, in retrospect, will not increase their life expectancy. As the entities of AIS and MIA (formerly BAC) with excellent survival have been separated from overtly invasive adenocarcinomas, the potential exists to learn how to minimize surgical intervention for pure nonsolid nodules through CT screening studies and long-term follow-up.23

Overdiagnosis is difficult to measure; initial estimates from the NLST suggested that it was 13%, but others suggested it may have been as high as 25%.45,352 An analysis of the NLST data reported that 18% of all lung cancers detected by LDCT seemed to be indolent.30 Bach et al288 found an increase in the number of patients with lung cancer detected through screening, yet found no evidence of a decline in the number of deaths from lung cancer. Their nonrandomized study raised concern that LDCT screening may lead to overdiagnosis of indolent cases and to the morbidity of treatment, without a survival benefit. However, the randomized NLST found that LDCT does decrease lung cancer mortality.11

Quality of Life

The effect of lung cancer screening on the quality of life (see Benefits of Lung Cancer Screening in this Discussion) is not fully known. A study by van den Bergh et al353 found no measured adverse effects, although approximately half of the participants reported discomfort while waiting for the results. Several studies (including the NLST and NELSON trial) have measured quality-of-life issues.328,329 Data from the NLST and NELSON trials suggest that lung screening did not adversely affect quality of life.295,329 False-positive and indeterminate results may decrease quality of life because of mental anguish and additional testing.27

During the NLST, 3 rounds of LDCT screening were done (ie, baseline, year 1, year 2) and then individuals were followed for an additional 3.5
years. Lung cancer was diagnosed between annual screens in some patients (ie, interval cancers); lung cancer was also diagnosed during follow-up. Thus, individuals should be cautioned that LDCT may not identify all lung cancers or prevent death from lung cancer. In addition, they should be informed that a positive test result does not mean they have lung cancer because many false-positive results occur with LDCT.

Unnecessary Testing

Any lung cancer screening program will result in additional testing. In a report by Croswell et al from the PLCO trial, the cumulative risk of having one false-positive result was 60% for men and 49% for women. The cumulative risk of undergoing an invasive diagnostic procedure prompted by the false-positive test was 29% for men and 22% for women. The NLST was a carefully supervised randomized controlled trial. In a less-controlled environment, the rate of additive studies may be higher. Sistrom et al reviewed the recommendations for additional imaging in more than 5.9 million radiology reports; they reported additional imaging of 35.8% for chest LDCT. The issue of incidental findings on screening examinations is problematic, and some organizations are attempting to address the issue, but regional and physician variations remain.

Radiation Exposure with LDCT

Current MDCT scanners provide a significantly enhanced capability for detecting small nodules through allowing thinner slice images. Using low-dose techniques, the mean effective radiation dose is 1.5 mSv (SD, 0.5 mSv) compared with an average of 7 mSv for conventional CT. The radiation dose of LDCT is 10 times that of chest radiography.

There may be even more reason to be concerned about use of chest LDCT scans for lung cancer screening, because these individuals, who are already at high risk for lung cancer, may experience adverse effects from increased radiation exposure. In fact, the effects of repeated exposure to radiation at regular intervals are not known. Brenner estimated a 1.8% increase in lung cancer cases if 50% of all current and former smokers in the United States between 50 and 75 years of age were to undergo annual screening LDCT. Lower doses of radiation are now used for LDCT scans and these lower doses may be less dangerous. The risk of radiation exposure over long periods will have to be taken into account when screening guidelines are developed, especially when recommending how frequently the scans should be performed. Radiation exposure from lung cancer screening using LDCT and PET/CT is greater for woman than for men. For men, the median cumulative effective dose was 9.3 mSv after 10 years of screening; the dose was 13.0 mSv for women. These doses are equivalent to one standard CT of the chest (7–8 mSv).

Increased Cost

Many are concerned about the effect of lung cancer screening on medical resources, including the cost of LDCT screening and additional testing. The cost of an LDCT scan was estimated to be about $527 (in 2011 U.S. dollars). Approximately 15% of the U.S. adult population (about 36.5 million people) are active smokers; approximately 11% are daily smokers. In 2015, the number of individuals at high risk who were candidates for lung cancer screening was approximately 6 million (using NLST criteria). Depending on the screening rate (50% or 75%), the annual cost in the United States is estimated to be about $1.7 to $3.4 billion. If 75% of the eligible population has screening, it is estimated that it will cost $240,000 to prevent one lung cancer death.
About $12.1 billion is spent each year on lung cancer care in the United States.362

LDCT screening will lead to false-positive results, detection of indeterminate nodules, and detection of potential disease other than lung cancer.295 In the NLST, although 24.2\% of the LDCT scans were positive, most of these were false-positive (96.4\%).11 Follow-up for positive nodules typically involves further imaging.11 Assuming a 50\% screening rate, a conservative estimate of the annual cost of working up false-positive nodules is about $800 million (3.5 million × 23\% × $1000). Use of LungRADS will probably decrease this cost because the false-positive rate will decrease. This estimate does not include costs of workup for other potential abnormalities detected during screening, such as cardiac and upper abdominal pathology. Of individuals with a false-positive result, approximately 7\% will undergo an invasive procedure (typically bronchoscopy).333 Limiting screening to only individuals with high-risk factors not only helps avoid unnecessary risks in individuals with a lower risk for cancer but also is important for decreasing the costs of the screening program. Pre-screening based on age, smoking history, appropriate medical history, family history, and occupational history is important to determine which patients are at high risk (see Risk Assessment in the NCCN Guidelines for Lung Cancer Screening).

Lack of well-defined guidelines can lead to overuse of screening! Excessive screening and/or interpretations of studies by unskilled individuals may occur without strict guidelines (as with mammography). Other factors, such as the interval at which screening should be performed, will also affect calculations of cost. In screening studies using LDCT, 23\% of the ELCAP and 69\% of the 1999 Mayo Clinic study had at least one indeterminate nodule. Depending on the size and characteristics of the indeterminate nodule, further evaluation may include serial follow-up LDCT, dynamic contrast-enhanced nodule densitometry, PET, or biopsy. False-positive results also lead to additional unnecessary testing and increased cost. The financial burden, potential complications from invasive procedures, and psychological effect of investigating these indeterminate and false-positive lesions are not fully understood.

Lung screening also leads to detection of disease other than lung cancer, such as infection; coronary artery calcification; COPD; and renal, adrenal, and liver lesions.24,242,297-299,365,366 Although detection of other diseases may frequently provide a clinical benefit to the patient, costs will be further increased with additional testing and treatment. It is important to rule out infection (see Follow-up of Screening Findings for Infection/Inflammation in the NCCN Guidelines for Lung Cancer Screening); however, antimicrobials are not indicated for chronic lesions.242 Inappropriate use of antimicrobials may cause adverse side effects and will increase cost. Incidental lesions may also be detected, which may require further testing (eg, intrapulmonary lymph nodes, noncalcified granulomas, thyroid incidentalomas, upper abdominal lesions).11,278

Cost-Effectiveness and Cost-Benefit Analyses

The cost-effectiveness of lung cancer screening is also important to take into account.367 LDCT imaging is more expensive than many other screening programs, and therefore it is important to validate the effectiveness of screening.368 Currently, Medicare reimburses $285 for a CT scan.362,367 Note that cost-benefit analysis provides dollar values for the outcomes, whereas cost-effectiveness analysis provides cost per health outcome (eg, cost per life-year gained). Seven analyses have reported a cost-effectiveness ratio of $100,000 (in U.S. dollars) or less per Quality Adjusted Life Years (QALYs) gained for LDCT, which
indicates that screening is cost effective. A threshold level of $100,000 per QALY gained is what some experts consider to be a reasonable value in the United States.

A fundamental flaw with cost–benefit analyses for lung cancer screening is that the true benefit of screening requires more years of follow-up and more years of screening to realize the full potential; therefore, this crucial factor has been arbitrarily assigned or assumed in prior analyses. The types of assumptions made can significantly affect the conclusions of the analysis. Furthermore, many cost–benefit analyses do not adequately represent the detrimental effects of false-positive test results on screening. For a person undergoing lung cancer screening with 2 sequential annual examinations, the cumulative risk of a false-positive test result was 33%. The cost of false-positive cancer screening results has been estimated to be at least $1000 per incident.

The ELCAP investigators documented that diagnostic procedure costs and hospital/physician costs in the first year after the diagnosis of lung cancer proportionally increased with increasing stage. The incremental cost per life-year gained ratio is also very sensitive to the fraction of the patients screened and found to have early-stage disease; the higher the percentage of patients found with early-stage disease, the lower the incremental cost ratio. The emerging NLST data must be carefully examined to ascertain the proportion of patients diagnosed with early-stage disease, their comparative mortality and morbidity, and the associated costs. Additional studies to examine other cohorts at risk will also be helpful in future cost-effectiveness analysis models.

Shared Decision-Making

Given the high percentage of false-positive results and the downstream management that ensues for many patients, the risks and benefits of lung cancer screening should be discussed with the individual before a screening LDCT scan is performed. Individuals should be cautioned that LDCT may not identify all lung cancers or prevent death from lung cancer. In addition, they should be informed that a positive test result does not mean they have lung cancer because false-positive results occur with LDCT. Shared patient/physician decision-making may be the best approach before deciding whether to do LDCT lung screening, especially for elderly patients with comorbid conditions. Smoking cessation counseling is recommended.

Lung screening is not recommended for patients who are not able or willing to have curative therapy, because of health problems or other major concerns. It is recommended that institutions performing lung cancer screening use a multidisciplinary approach that may include specialties such as chest radiology, pulmonary medicine, and thoracic surgery. Guidelines from the ACCP and ASCO state that only centers with considerable expertise in lung cancer screening should do LDCT.

Shared decision-making aids may assist when determining if screening should be recommended (see the NCCN Guidelines for Lung Cancer Screening). In addition, risk calculators may be used to assist with decision-making for group 2 in the NCCN Guidelines (ie, individuals ≥50 years with a ≥20 pack-year smoking history). For example, the Tammemagi risk calculator includes additional variables that can be used to help determine whether individuals in group 2 are candidates for screening. The additional 7 variables include age, race/ethnicity, socioeconomic status, body mass index, COPD, personal history of cancer, and family history of lung cancer. Using this risk calculator, the threshold for screening is 1.3%. Previous lung cancer screening results can also be used for risk stratification.
Summary
Lung cancer screening with LDCT is a complex and controversial topic, with inherent risks and benefits. Results from the large, prospective, randomized NLST showed that screening with LDCT decreased the RR of death from lung cancer by 20% in a select group of individuals with high-risk factors.\(^{11}\) The NLST results indicate that to prevent one death from lung cancer, 320 individuals at high risk must be screened with LDCT. The NLST findings have not yet been replicated in a separate cohort, although the other randomized trials assessing the efficacy of lung screening with LDCT have been underpowered. Seven analyses have reported a cost effectiveness ratio of $100,000 (in U.S. dollars) or less per QALYs gained for LDCT, which indicates that screening is cost effective.\(^{369}\) A threshold level of $100,000 per QALY gained is what some experts consider to be a reasonable value in the United States. At some point, an acceptable level of risk will have to be deemed appropriate for the benefits of screening.

The NCCN Panel recommends LDCT screening for select individuals at high risk for lung cancer based on the NLST results, nonrandomized studies, and observational data. These NCCN Guidelines discuss in detail the criteria for determining which patients are at high risk, and the algorithm provides recommendations for evaluating and following up nodules detected on LDCT screening (e.g., solid, part-solid, and nonsolid nodules). The cutoffs for assessing suspicious nodules were revised to decrease the false-positive rate in Version 1.2014 of the NCCN Guidelines. For solid or part-solid nodules, the NCCN definition of a positive screening scan is a solid nodule measuring 6 mm. For nonsolid lesions, the NCCN-recommended cutoff is 20 mm. The ACR has developed Lung-RADS to standardize the reporting and management from LDCT lung examinations.\(^{36,254}\) Lung-RADS has been reported to improve the detection of lung cancer and to decrease the false-positive rate.\(^{22,32,36,37}\) For the Version 1.2018 update, the NCCN cutoff thresholds for solid, part solid, and nonsolid nodules have been rounded to the nearest whole number to harmonize with the Lung-RADS cutoffs.\(^{22}\)

Lung cancer screening is recommended (category 2A) for group 2 of the high-risk groups that are candidates for lung cancer screening (those ≥50 years with a ≥20 pack-year smoking history and one additional risk factor other than second-hand smoke). The NCCN Panel feels it is important to expand screening beyond the narrow NLST criteria to a larger group of individuals at high risk.\(^{150}\) Using just the narrow NLST criteria, only 27% of patients currently being diagnosed with lung cancer will be covered. For LDCT of the lung, the preferred slice width is 1.0 mm or less and the acceptable slice width is 2.5 mm or less based on Lung-RADS.

Before recommending lung cancer screening, shared patient/physician decision-making is recommended so that patients have a full understanding of all risks and benefits related to screening with LDCT.\(^{150,373}\) Shared decision-making aids may assist when determining if screening should be recommended. Smokers should always be advised to quit smoking tobacco (see the NCCN Guidelines for Smoking Cessation, available at www.NCCN.org). Programs using behavioral counseling combined with medications that promote smoking cessation (approved by the FDA) can be very useful. Former smokers should be encouraged to remain abstinent. As policies for implementing lung screening programs are designed, a focus on multidisciplinary programs (incorporating chest radiology, pulmonary medicine, and thoracic surgery) will be helpful to optimize decision-making and minimize interventions for patients with benign lung disease.

The USPSTF recommends lung screening; their B recommendation means that lung screening is covered under the Affordable Care Act for
individuals with high-risk factors who are 55 to 80 years of age. CMS covers annual screening LDCT for appropriate Medicare beneficiaries at high risk for lung cancer based on the NLST criteria if they also receive counseling and shared decision-making before screening.
Table 1: Comparison of the I-ELCAP and NLST Lung Screening Protocols

<table>
<thead>
<tr>
<th>Definition of Positive Nodule*</th>
<th>I-ELCAP</th>
<th>NLST†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Solid and PS nodule ≥5 mm‡</td>
<td>Nodule ≥4 mm</td>
</tr>
<tr>
<td></td>
<td>NS nodule ≥8 mm‡</td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>New solid or PS nodule</td>
<td>Same as Baseline</td>
</tr>
<tr>
<td></td>
<td>New NS nodule ≥8 mm‡</td>
<td></td>
</tr>
</tbody>
</table>

Recommendations for Positive Nodule

<table>
<thead>
<tr>
<th>Baseline</th>
<th>LDCT in 3 mo, then resume annual LDCT if stable. Consider PET if solid component >10 mm. Biopsy if PET positive; annual LDCT if PET negative. If nodule ≥15 mm, treat with antibiotics and LDCT at 1 mo, or biopsy. LDCT in 1 mo for solid endobronchial nodule.</th>
<th>Solid or PS nodule 4–10 mm, then LDCT 3–6 mo. NS nodule 4–10 mm, then LDCT 6–12 mo. If growth but nodule <7 mm, then LDCT in 3–6 mo. If growth and nodule ≥7 mm, then follow recommendations of nodules >10 mm. Any nodule >10 mm consider biopsy, CECT, PET/CT, or LDCT in 3–6 mo if low suspicion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>Annual LDCT if NS nodule <8 mm. LDCT in 6 mo if new solid/PS nodule. Antibiotics and 1 mo LDCT if solid/PS nodule ≥5 mm or NS nodule ≥8 mm, then LDCT at 3 mo if nodule stable.</td>
<td>Same as Baseline</td>
</tr>
</tbody>
</table>

Definition of Nodule Growth

≥50% increase in mean diameter if nodule <5 mm	≥10% increase in nodule diameter
≥30% increase in mean diameter if nodule 5–9 mm	
≥20% increase in mean diameter if nodule >10 mm	

CEPT = contrast-enhanced CT; CT = computed tomography; I-ELCAP = International Early Lung Cancer Action Program; LDCT = low-dose CT; NLST = National Lung Screening Trial; NS = non-solid; PET = positron emission tomography; PS = part solid.

*Requiring imaging or workup in addition to annual LDCT. †Guidelines rather than a strict study regimen. ‡Mean diameter of nodule.
References

92. CDC. Fast facts: cigars: Centers for Disease Control and Prevention; 2016. Available at: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/tobacco_industry/cigars/.

150. McKee BJ, Hashim JA, French RJ, et al. Experience with a CT screening program for individuals at high risk for developing lung

208. Kim H, Park CM, Song YS, et al. Measurement variability of persistent pulmonary subsolid nodules on same-day repeat CT: what is...

237. Fletcher JW, Kymes SM, Gould M, et al. A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of...

Lung Cancer Screening

