

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Prostate Cancer Early Detection

Version 2.2017 — September 15, 2017

NCCN.org

Continue

NCCN Guidelines Version 2.2017 Prostate Cancer Early Detection Panel Members

NCCN Guidelines Index
Table of Contents
Discussion

- *Peter R. Carroll, MD, MPH/ Chair ω UCSF Helen Diller Family Comprehensive Cancer Center
- *J. Kellogg Parsons, MD, MHS/ Vice-Chair ¶ UC San Diego Moores Cancer Center

Gerald Andriole, MD ω Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Robert R. Bahnson, MD ω The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

Erik P. Castle, MD ω Mayo Clinic Cancer Center

*William J. Catalona, MD ω
Robert H. Lurie Comprehensive Cancer Center
of Northwestern University

Douglas M. Dahl, MD ω Massachusetts General Hospital Cancer Center

John W. Davis, MD ω
The University of Texas
MD Anderson Cancer Center

Jonathan I. Epstein, MD ≠ The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Ruth B. Etzioni, PhD &
Fred Hutchinson Cancer Research Center/
Seattle Cancer Care Alliance

NCCN Staff
Deborah Freedman-Cass, PhD
Dorothy A. Shead, MS

NCCN Guidelines Panel Disclosures

Thomas Farrington, BSEE ¥
Prostate Health Education Network

George P. Hemstreet, III, MD, PhD ω Fred & Pamela Buffett Cancer Center at The Nebraska Medical Center

* David Jarrard, MD ω University of Wisconsin Carbone Cancer Center

Adam S. Kibel, MD ω Dana-Farber/Brigham and Women's Cancer Center

Simon Kim, MD, PhD ω Case Comprehensive Cancer Center/ University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute

Paul H. Lange, MD ω University of Washington Medical Center/ Seattle Cancer Care Alliance

William Lowrance, MD, MPH ω Huntsman Cancer Institute at the University of Utah

Paul Maroni, MD ω University of Colorado Cancer Center

James Mohler, MD ω Roswell Park Cancer Institute

Todd M. Morgan, MD ω University of Michigan Comprehensive Cancer Center

Kelvin A. Moses, MD, PhD ω Vanderbilt-Ingram Cancer Center

Robert B. Nadler, MD ω Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Michael Poch, MD ω Moffitt Cancer Center

Chuck Scales, MD ω Duke Cancer Institute

Terrence M. Shaneyfelt, MD, MPH Þ University of Alabama at Birmingham Comprehensive Cancer Center

Marc C. Smaldone, MD MSHP ω Fox Chase Cancer Center

Geoffrey Sonn, MD ω Stanford Cancer Center

Preston Sprenkle, MD ω Yale Cancer Center/Smilow Cancer Hospital

Andrew J. Vickers, PhD ††
Memorial Sloan Kettering Cancer Center

Robert Wake, MD ω St. Jude Children's Research Hospital/ The University of Tennessee Health Science Center

Bertram Yuh, MD ω City of Hope Comprehensive Cancer Center

NCCN Guidelines Version 2.2017 Table of Contents Prostate Cancer Early Detection

NCCN Guidelines Index
Table of Contents
Discussion

NCCN Prostate Cancer Early Detection Panel Members

Summary of Guidelines Updates (UPDATES)

Introduction (PROSD-1)

Baseline Evaluation, Risk Assessment, and Early Detection Evaluation (PROSD-2)

Indications for Biopsy (PROSD-3)

Management of Biopsy Results (PROSD-4)

Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN member institutions, <u>click here:</u> <u>nccn.org/clinical_trials/physician.html</u>.

NCCN Categories of Evidence and Consensus: All recommendations are Category 2A unless otherwise indicated.

See <u>NCCN Categories of Evidence</u> <u>and Consensus</u>.

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2017

Comprehensive NCCN Guidelines Version 2.2017 Updates Cancer Network® Prostate Cancer Early Detection

NCCN Guidelines Index
Table of Contents
Discussion

Updates in Version 2.2017 of the NCCN Guidelines for Prostate Cancer Early Detection from Version 1.2017 include:

Discussion

• The Discussion section has been updated to reflect changes in the algorithm.

Updates in Version 1.2017 of the NCCN Guidelines for Prostate Cancer Early Detection from Version 2.2016 include:

PROSD-2

- Baseline Evaluation:
- Modified footnote "a", replaced "However, the effects of earlier or more intensive screening on cancer outcomes and on screening-related harms in African-American men remain unclear. Therefore, although these men may require a higher level of vigilance and different considerations when analyzing the results of screening tests, the panel cannot provide separate screening recommendations for these men until more data become available." with "This is attributable to a greater risk of developing preclinical prostate cancer and a higher likelihood that a preclinical tumor will spread. Consequently it is reasonable for African-American men to begin discussing PSA screening with their providers several years earlier than Caucasian-American men and to consider screening at annual intervals rather than every other year."
- ▶ Modified "Family or personal history of BRCA 1/2 mutations."
- ▶ Added a footnote to "Family history of BRCA 1/2 mutations.
- New footnote states: "If there is a known or suspected cancer susceptibility gene, referral to a cancer-genetics professional is recommended. BRCA1/2 pathogenic mutation carriers are associated with an increased risk of prostate cancer before age 65 years, and prostate cancer in men with germline BRCA2 mutations occurs earlier and is more likely to be associated with prostate cancer mortality. Information regarding BRCA1/2 gene status should be used as part of the discussion about prostate cancer screening. See Discussion."
- Risk Assessment:
- ▶ Modified last bullet "Strongly consider baseline digital rectal examination (DRE)."
- Early Detection Evaluation:
- Age >75y, in select patients (category 2B), changed from "PSA >3 ng/mL or very suspicious DRE" to "PSA ≥4 ng/mL or very suspicious DRE."
- ▶ Footnote "c", added reference. Prognostic Significance of Digital Rectal Examination and Prostate Specific Antigen in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Arm. Halpern JA, Shoag JE, Mittal S, et al. Prognostic significance of digital rectal examination and prostate specific antigen in the prostate, lung, colorectal and ovarian (PLCO) cancer screening arm. J Urol 2017;197:363-368.
- ▶ The following sentence was removed from footnote "d": "One could consider increasing the PSA threshold for biopsy in this group (i.e., >4 ng/mL)."

NCCN Guidelines Index
Table of Contents
Discussion

Updates in Version 1.2017 of the NCCN Guidelines for Prostate Cancer Early Detection from Version 2.2016 include:

PROSD-3

- Indications for Biopsy:
- ▶ DRE, added "if not performed during initial risk assessment."
- ▶ Moved "Consider percent free PSA, 4Kscore, or PHI" to prior to TRUS-guided biopsy.
- ▶ Added "Consider multiparametric MRI."
- Management:
- → Added a new footnote to "Follow up in 6-12 mo with PSA/DRE."
 - ♦ New footnote states "Patients with a persistent and significant increase in PSA should be encouraged to undergo TRUS-guided biopsy."
- Modified footnote "h", "Biomarkers that improve the specificity of detection are not, <u>as yet</u>, recommended as firstline screening tests. However, there may be some patients who meet PSA standards for consideration of prostate biopsy, but for whom the patient and/or the physician wish to further define the probability of high-grade cancer. A percent free PSA <10%, PHI >35 or 4Kscore (which provides an estimate of the probability of high-grade prostate cancer) are potentially informative in patients who have never undergone biopsy or after a negative biopsy; a PCA3 score >35 is potentially informative after a negative biopsy. <u>The predictive value of the serum biomarkers discussed above has not been correlated with that of MRI. Therefore it is not known how such tests could be applied in optimal combination."</u>
- ▶ The following sentence was removed from footnote "j", "MRI is not recommended routinely prior to initial prostate biopsy."
- ▶ Added a new reference to footnote "j", Ahmed H, Bosaily A, Brown L, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389:815-822.

PROSD-4

- Management of Biopsy Results:
- ▶ Atypia, suspicious for cancer, revised recommendation to state:
 - **♦ Follow-up:**
 - Consider serum or urine tests and/or multiparametric MRI
 - Consider repeated biopsy with relative increased sampling of the atypical site

Note: All recommendations are category 2A unless otherwise indicated.

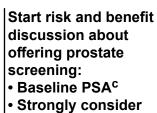
NCCN Guidelines Index
Table of Contents
Discussion

INTRODUCTION

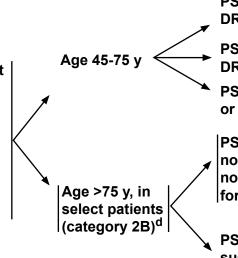
The panel recognizes that prostate cancer represents a true spectrum of disease and that <u>not</u> all men diagnosed with prostate cancer require treatment. The panel believes that maximizing the detection of early prostate cancer will increase the detection of both indolent (slower-growing) and aggressive (faster-growing) prostate cancers. The challenge is to minimize immediate treatment (over-treatment) of indolent cancers by accurately characterizing the biology of the detected cancer. This guideline highlights several techniques designed to improve the identification of significant cancer while avoiding the detection of indolent disease. Identification and selective treatment of aggressive cancers should result in significant decreases in morbidity and mortality while limiting adverse effects on quality of life. The NCCN Prostate Cancer Early Detection Guidelines do not address the treatment of prostate cancer. See the <u>NCCN Guidelines for Prostate Cancer</u> for prostate cancer treatment recommendations. It is the intention of the panel that these guidelines be linked and, specifically, early detection strategies that do not recognize the importance of refined and selective treatment may result in harm.

The guidelines are specifically for men opting to participate in an early detection program (after receiving the appropriate counseling on the pros and cons). It is the majority opinion of the Prostate Cancer Early Detection Panel Members that there is a growing population of men currently being diagnosed with prostate cancer who can, and should, be monitored for their disease as presented in the NCCN Guidelines for Prostate Cancer. The guidelines for when to start and stop screening, at what intervals to conduct screening, and when to biopsy were recommended by most panel members, but a consensus was not reached. The guidelines are continuously in a state of evolution, and the panel will incorporate changes based on new evidence and expert opinion and provide a rating of consensus for each recommendation.

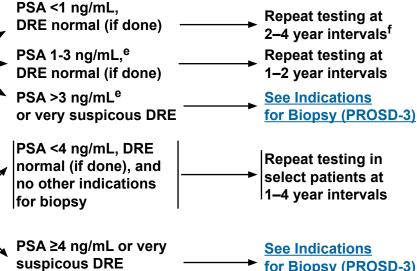
See Baseline Evaluation (PROSD-2)



NCCN Guidelines Index
Table of Contents
Discussion


BASELINE EVALUATION

- History and physical (H&P) including:
- **▶** Family history
- **▶** Medications
- → History of prostate disease and screening, including prior PSA and/ or isoforms, exams, and biopsies
- ▶ Race^a
- ▶ Family or personal history of BRCA1/2 mutations^b


RISK ASSESSMENT

 Strongly consider baseline digital rectal examination (DRE)^c

EARLY DETECTION EVALUATION

^aAfrican-American men have a higher incidence of prostate cancer, increased prostate cancer mortality, and earlier age of diagnosis compared to Caucasian-American men. This is attributable to a greater risk of developing preclinical prostate cancer and a higher likelihood that a preclinical tumor will spread. Consequently, it is reasonable for African-American men to begin discussing PSA screening with their providers several years earlier than Caucasian-American men and to consider screening at annual intervals rather than every other year.

blf there is a known or suspected cancer susceptibility gene, referral to a cancer-genetics professional is recommended. BRCA1/2 pathogenic mutation carriers are associated with an increased risk of prostate cancer before age 65 years, and prostate cancer in men with germline BRCA2 mutations occurs earlier and is more likely to be associated with prostate cancer mortality. Information regarding BRCA1/2 gene status should be used as part of the discussion about prostate cancer screening. See Discussion.

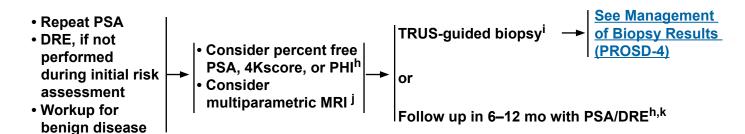
cThe best evidence supports the use of serum PSA for the early detection of prostate cancer. DRE should not be used as a stand-alone test, but should be performed in those with an elevated serum PSA. DRE may be considered as a baseline test in all patients as it may identify high-grade cancers associated with "normal" serum PSA values. Consider referral for biopsy, if DRE is very suspicious. Medications such as 5α-reductase inhibitors (finasteride and dutasteride) are known to decrease PSA by approximately 50%. PSA values in these men should be corrected accordingly. Prognostic Significance of Digital Rectal Examination and Prostate Specific Antigen in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Arm. Halpern JA, Shoag JE, Mittal S, et al. Prognostic significance of digital rectal examination and prostate specific antigen in the prostate, lung, colorectal and ovarian (PLCO) cancer screening arm. J Urol 2017;197:363-368.

description of the age of 75 years of age should be done with caution and only in very healthy men with little or no comorbidity as a large proportion may harbor cancer that would be unlikely to affect their life expectancy, and screening in this population would substantially increase rates of overdetection. However, a clinically significant number of men in this age group may present with high-risk cancers that pose a significant risk if left undetected until signs or symptoms develop. Very few men above the age of 75 years benefit from PSA testing.

eThe reported median PSA values for men aged 40–49 y range from 0.5–0.7 ng/mL, and the 75th percentile values range from 0.7–0.9 ng/mL. Therefore, the PSA value of 1.0 ng/mL selects for the upper range of PSA values. Men who have a PSA above the median for their age group are at a higher risk for prostate cancer and for the aggressive form of the disease. The higher above the median, the greater the risk.

^fMen age ≥ 60 years with serum PSA <1.0 ng/mL have a very low risk of metastases or death due to prostate cancer and may not benefit from further testing. A PSA cut point of 3.0 ng/mL at age 75 years also carries a low risk of poor outcome.

Note: All recommendations are category 2A unless otherwise indicated.


Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Index
Table of Contents
Discussion

INDICATIONS FOR BIOPSY⁹

MANAGEMENT

⁹The level of PSA correlates with the risk of prostate cancer. The Prostate Cancer Prevention Trial (PCPT) demonstrated that 15% of men with a PSA level of ≤4.0 ng/mL and a normal DRE had prostate cancer diagnosed on end-of-study biopsies. Approximately 30% to 35% of men with serum PSA between 4 to 10 ng/mL will be found to have cancer. Total PSA levels >10 ng/mL confer a greater than 67% likelihood of prostate cancer.

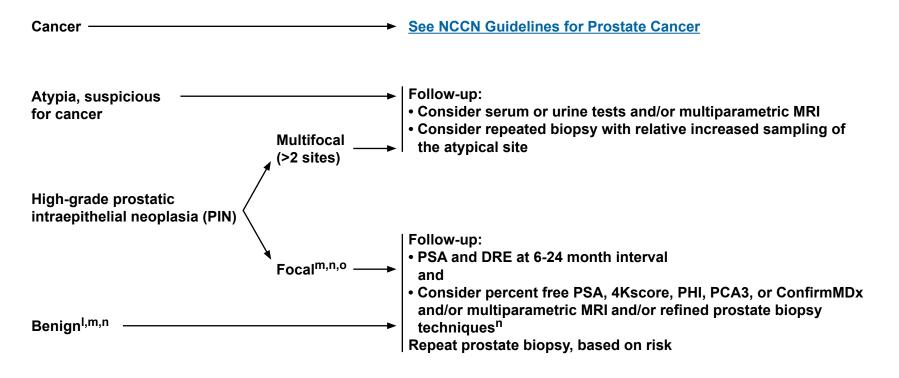
^hBiomarkers that improve the specificity of detection are not, as yet, recommended as firstline screening tests. However, there may be some patients who meet PSA standards for consideration of prostate biopsy, but for whom the patient and/or the physician wish to further define the probability of high-grade cancer. A percent free PSA <10%, PHI >35 or 4Kscore (which provides an estimate of the probability of high-grade prostate cancer) are potentially informative in patients who have never undergone biopsy or after a negative biopsy; a PCA3 score >35 is potentially informative after a negative biopsy. The predictive value of the serum biomarkers discussed above has not been correlated with that of MRI. Therefore it is not known how such tests could be applied in optimal combination.

For patients with abnormal DRE, biopsy or additional testing should be considered based on concern for cancer.

TRUS-GUIDED BIOPSY
Initial and Repeat
Extended-pattern biopsy (12 cores)

- Number of cores:
 - ▶ Sextant (6),
 - ▶ Lateral peripheral zone (6), and
 - Lesion-directed at palpable nodule or suspicious image
- Anteriorly directed biopsy is not supported in routine biopsy. However, the addition of a transition zone biopsy to an extended biopsy protocol may be considered in a repeat biopsy if PSA is persistently elevated.
- Multiparametric MRI (MP MRI) followed by lesion targeting may maximize the detection of higher risk disease and limit the detection of lower risk disease.
- Local anesthesia can decrease pain/ discomfort associated with prostate biopsy and should be offered to all patients.

jEmerging data suggest that, in men undergoing initial biopsy, targeting using MRI/ultrasound fusion may significantly increase the detection of clinically significant, higher-risk (Gleason grade ≥ 4+3=7) disease while lowering the detection of lower-risk (Gleason sum 6 or lower-volume Gleason grade 3+4=7) disease. Siddiqui M, Rais-Bahrami S, Turkbey B, et al. Comparison of MRI/Ultrasound Fusion–Guided Biopsy With Ultrasound-Guided Biopsy for the Diagnosis of Prostate Cancer. JAMA 2015;313:390-7. Ahmed H, Bosaily A, Brown L, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389:815-822.


encouraged to undergo TRUS-guided biopsy.

Note: All recommendations are category 2A unless otherwise indicated.

NCCN Guidelines Index
Table of Contents
Discussion

MANAGEMENT OF BIOPSY RESULTS

It is well known that a negative prostate biopsy does not preclude a diagnosis of prostate cancer on subsequent biopsy. Those patients with negative prostate biopsies should be followed with DRE and PSA. Tests that improve specificity in the post-biopsy state—including 4Kscore, PHI, percent free PSA, PCA3, and ConfirmMDx—should be considered in patients thought to be higher risk despite a negative prostate biopsy (See PROSD-3).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

^mPSA testing may be discontinued at certain ages and PSA cutpoints, as noted in the <u>discussion section</u>.

ⁿ Emerging evidence suggests that use of multiparametric MRI and/or use of refined prostate biopsy techniques (image guidance using MRI/ultrasound fusion, transperineal, or saturation prostate biopsies) may be of value. These techniques may help identify regions of cancer missed on prior prostate biopsies and should be considered in selected cases after at least 1 negative prostate biopsy. Multiparametric MRI followed by lesion targeting may maximize the detection of higher risk disease and limit the detection of lower risk disease.

NCCN Guidelines Index
Table of Contents
Discussion

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

Table of Contents

Introduction	MS-2
Overview	
Literature Search Criteria and Guidelines Update Methodology	MS-2
Types of Early Detection Testing	MS-3
PSA Testing	
Factors Affecting PSA Levels	
Controversies of PSA Testing	
DRE	MS-5
Population-Based Screening Studies	MS-6
ERSPC Trial	
PLCO Trial	MS-8
Trial Limitations	MS-8
Practical Considerations of Testing	MS- 9
S	

Age at Which to Initiate Testing	MS-9
Frequency of Testing	MS-9
Age at Which to Discontinue Testing	MS-10
Screening in High-Risk Populations	MS-11
Prostate Cancer Risk in Genetic Syndromes	MS-12
Indications for Biopsy	MS-13
Pre-Biopsy Workup	MS-14
Risk Calculators	MS-14
Imaging	MS-14
Novel Imaging Techniques	
Biomarker Testing: PSA Derivatives and Other Tests	MS-16
Age- and Race-Specific PSA Reference Ranges	MS-16
PSAV	
%f PSA	MS-18
cPSA	MS-18
PSAD	MS-18
PCA3	MS-19
PHI	MS-19
4Kscore®	MS-20
ConfirmMDx	MS-20
Additional Biomarker Tests	MS-21
ExoDx Prostate(IntelliScore)	MS-21
Mi-Prostate Score	
SelectMDx	MS-22
Biopsy Technique	MS-22
Initial Biopsy	
Targeted Biopsy Techniques for Initial Biopsy	MS-23
Repeat Biopsies	
Targeted Biopsy Techniques for Repeat Biopsy	MS-24
Saturation Biopsy Techniques	
Risks of Biopsy	MS-26
NCCN Recommendations	MS-27
General Considerations	MS-27
Interpretation of Biopsy Results	MS-28
Summary	
Deferences	140 00

NCCN Guidelines Index
Table of Contents
Discussion

Introduction

Prostate cancer represents a spectrum of disease that ranges from non-aggressive, slow-growing disease that may not require treatment to aggressive, fast-growing disease that does. The NCCN Guidelines for Prostate Cancer Early Detection provide a set of sequential recommendations detailing a screening and evaluation strategy for maximizing the detection of prostate cancer that is effectively treatable and that, if left undetected, represents a risk to the patient.

These guidelines focus on minimizing unnecessary procedures and limiting the detection of indolent disease. These guidelines were developed for men who have elected to participate in the early detection of prostate cancer. The panel does not support unselected and uninformed population-based screening. The panel supports screening only in healthy men. Any clinician who uses these guidelines is expected to exercise independent medical judgment in the context of individual clinical circumstances, and to fully incorporate patient preferences in deciding how to apply these guidelines.

Overview

Prostate cancer is the most commonly diagnosed cancer and the third leading cause of cancer deaths in American men. In 2017, it is estimated that 161,360 men will be diagnosed with prostate cancer and 26,730 will die of this disease. During the same period, nearly 20 million men in the United States will be confronted with important decisions regarding early detection for prostate cancer. Men born in the United States have about 1 chance in 7 of eventually being diagnosed with this malignancy and about 1 chance in 39 of eventually dying of it.²

By 2015, death rates for prostate cancer in the United States had fallen 47% from peak rates, largely due to early detection and improved treatment.³

The panel supports the continued use of prostate-specific antigen (PSA) testing for the early detection of prostate cancer in informed, healthy men in certain age groups. The panel bases this recommendation on level I evidence from randomized trials that observed a reduction in prostate cancer-specific mortality in men who underwent PSA screening. However, the panel also uniformly acknowledges the risk of over-detection of otherwise indolent disease and the attendant risk of overtreatment, which exposes men to the potential morbidity of treatment without benefit. Therefore, these guidelines highlight several techniques designed to improve the identification of significant cancer while avoiding the detection of indolent disease. The panel also concludes that these NCCN Guidelines for Prostate Cancer Early Detection should be used in conjunction with the NCCN Guidelines for Prostate Cancer (available at www.NCCN.org), which explicitly recommends active surveillance or observation for appropriate candidates.

Literature Search Criteria and Guidelines Update Methodology

Prior to the update of this version of the NCCN Guidelines for Prostate Cancer Early Detection, an electronic search of the PubMed database was performed to obtain key literature in the field of prostate cancer published between September 18, 2015 and August 18, 2016, using the following search terms: (prostate cancer) AND (screening OR early detection). The PubMed database was chosen because it remains the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature.⁴

NCCN Guidelines Index
Table of Contents
Discussion

The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase III; Clinical Trial, Phase IV; Guideline; Randomized Controlled Trial; Meta-Analysis; Validation Studies; and Systematic Reviews.

The PubMed search resulted in 141 citations, and their potential relevance was examined. The data from key PubMed articles and articles from additional sources (eg, e-publications ahead of print, meeting abstracts) deemed as relevant to these Guidelines and discussed by the panel have been included in this version of the Discussion section. Recommendations for which high-level evidence is lacking are based on the panel's review of lower-level evidence and expert opinion.

The complete details of the Development and Update of the NCCN Guidelines are available on the NCCN website (www.NCCN.org).

Types of Early Detection Testing PSA Testing

PSA is a glycoprotein secreted by prostatic epithelial cells, and its protease activity lyses the clotted ejaculate to enhance sperm motility. Although primarily confined to the seminal plasma, PSA enters the circulation through unknown mechanisms. Many commercially available sources of PSA antibodies for serum tests are available worldwide. With the exception of minor differences in the calibration of these assays, they perform comparably when used appropriately. However, PSA measures obtained using different commercial assays are not directly comparable or interchangeable, since the values are calibrated against different standards. If an abnormally high PSA is observed, repeat testing should be performed, particularly if the value is close to the

threshold. One study showed that approximately 25% of men with initial PSA levels between 4 and 10 ng/mL had normal PSA values upon repeat testing.⁵

PSA is not a cancer-specific marker, and as such most men with elevated PSA levels do not have prostate cancer. In fact, only about 25% of men with PSA in the 4 to 10 ng/mL range have a subsequent positive biopsy.⁶ Still, men with low PSA values have a significant chance of having prostate cancer. Using data from 18,882 men in the Prostate Cancer Prevention Trial (PCPT), Thompson et al⁷ determined the sensitivity and specificity of PSA levels for detecting any prostate cancer using various cut-offs. At 3.1 ng/mL, PSA has a sensitivity of about 32% and a specificity of about 87%.

Despite its limitations, recent population-based prostate cancer screening studies have demonstrated survival benefits using PSA—sometimes in combination with DRE or other ancillary tests, as discussed in more detail below.

Factors Affecting PSA Levels

PSA can be elevated due to infection, recent instrumentation, ejaculation, or trauma. However, empiric antibiotic use appears to have little value for improving test performance in asymptomatic men with an elevated PSA.⁸

The 5α-reductase inhibitors (5-ARI) finasteride and dutasteride are commonly used to treat lower urinary tract symptoms due to benign prostatic hyperplasia (BPH). Use and duration of 5-ARI therapy should be elicited carefully in the history, because this class of drugs typically results in an approximate 50% decrease in serum PSA levels within 6 to 12 months of initiating therapy. However, this effect is tremendously variable. For example, one study showed that after 12 months of

NCCN Guidelines Index
Table of Contents
Discussion

treatment, only 35% of men demonstrated the expected 40% to 60% decrease in PSA, while another 30% had greater than a 60% decrease. Thus, the commonly employed method of doubling the measured PSA value to obtain an adjusted value may result in unreliable cancer detection.

In fact, failure to achieve a significant PSA decrease while taking 5-ARIs can indicate a heightened risk for prostate cancer that warrants regular testing. Results from several clinical trials suggested that 5-ARIs enhance the predictive capacity of PSA,^{11,12} but reflex ranges for PSA among patients on 5-ARIs have not been established. The PCPT of 18,882 men demonstrated that finasteride reduced the incidence of prostate cancer by 25% compared to placebo. This reduction was almost exclusively for low-grade (Gleason sum 6) tumors; an increased proportion of aggressive (Gleason sum ≥7) tumors was seen.¹³ However, after 18 years of follow-up, there was no significant group difference in overall survival or survival after the diagnosis of prostate cancer in those on finasteride compared to the control group.¹⁴

In the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) trial, PSA detected more high-grade tumors in the dutasteride arm, while the overall prostate cancer diagnosis fell by 23% compared to control.¹¹ Similar to the PCPT trial, the difference in the number of high-grade cancers detected did not result in a mortality difference.¹⁵

A report on the Combination of Avodart (dutasteride) and Tamsulosin (CombAT) trial also showed a 40% lower incidence of prostate cancer with dutasteride plus tamsulosin (another BPH drug) compared to tamsulosin alone, along with a slightly improved yield of PSA-driven biopsy.¹² Unlike the PCPT and REDUCE studies, diagnosis of highgrade (Gleason sum ≥7) tumors was not increased. Overall, these studies suggest that PSA testing may have enhanced specificity for

men receiving finasteride or dutasteride. Whether or not men should consider taking these agents for chemoprevention is beyond the scope of this guideline.

Ketoconazole, commonly used to treat fungal conditions, inhibits the androgen synthesis pathway and hence can also lower PSA levels. Since moderate PSA decreases have been observed with ketoconazole in the treatment of patients with prostate cancer after failure of hormonal therapy, ¹⁶ recent ketoconazole use should also be noted in the history.

A health survey on 12,457 men visiting a prostate cancer screening clinic showed that over 20% of the men took herbal supplements, while only 10% took prescription medication (such as finasteride) for lower urinary tract symptoms. ¹⁷ Several of these herbal supplements, such as saw palmetto, may contain phytoestrogenic compounds that can affect serum PSA levels. Very little is known about the exact composition of these herbal supplements and their specific effects on serum PSA levels.

Overall, appropriate use of PSA testing alone can provide a diagnostic lead-time of 5 to 10 years, but the lead-time varies across studies, populations, and screening protocols. Since the introduction of PSA testing, there has been an increase in the detection of early-stage, organ-confined disease and a decrease in disease that is metastatic at the time of diagnosis. The risk of prostate cancer increases with increasing PSA, but there is no level of PSA below which the risk of prostate cancer can be eliminated. The PCPT demonstrated that 15% of men with a PSA level of 4.0 ng/mL or less and a normal DRE had prostate cancer (as diagnosed by end-of-study biopsies). Approximately 30% to 35% of men with serum PSAs in the 4 to 10 ng/mL range will be found to have cancer. Total PSA (tPSA) levels >10

NCCN Guidelines Index
Table of Contents
Discussion

ng/mL confer a greater than 67% likelihood of biopsy-detectable prostate cancer.²¹

Controversies of PSA Testing

The decision about whether to pursue early detection of prostate cancer is complex. When, who, and how often to test remain major topics of debate. PSA screening has played a critical role in the downward migration of prostate cancer stage seen over the past decades. The incidence of metastatic disease at the time of diagnosis has decreased dramatically since 1988. This trend has likely, but not positively, contributed to a substantial reduction in prostate cancer mortality. 30,31

Still, although prostate cancer is a major cause of death and disability in the United States, many argue that the benefits of early detection are, at best, moderate, and that early detection often results in overdetection, which is the identification of indolent disease, disease that would not be a problem for the patient if undetected or untreated. These arguments hold that overdetection may lead to overtreatment, which is aggressive treatment in men with a low probability of yielding clinical benefit. However, analyses of recent trends in prostate cancer management show that the rates of active surveillance for early-stage disease have increased significantly, allaying initial concerns about overtreatment.³² In addition, PSA testing often produces false-positive results, which in turn contribute to patient anxiety and the increased costs and potential complications associated with unnecessary biopsies.

On the basis of its perception of the harm-benefit tradeoffs of prostate cancer screening, the U.S. Preventive Services Task Force (USPSTF) recommended against routine PSA testing in 2012.³³ After this recommendation, prostate cancer screening decreased as did biopsy rates, diagnoses of localized prostate cancers, and radical prostatectomy rates.³⁴⁻⁴² The effect of the 2012 USPSTF

recommendations on the rate of diagnoses of metastatic prostate cancer is, however, unclear, with some studies showing an increase and others showing none.^{39,43,44}

The USPSTF released updated draft recommendations in 2017 and is currently working on a final recommendation statement.⁴⁵ The draft recommendations are: 1) against prostate cancer screening in men age 70 years and older; and 2) for individualized, informed decision-making regarding prostate cancer screening in men aged 55 to 69 years. For men in this younger age group, clinicians should inform them regarding the potential harms and benefits of PSA-based screening. The draft USPSTF statement does not provide guidance for men younger than 55 years.

DRE

Best evidence supports the use of serum PSA for the early detection of prostate cancer. Still, many experts continue to recommend digital rectal examination (DRE) for screening, as some clinically significant cancers may potentially be missed using a serum PSA cut-point alone. Studies have consistently shown that prostate cancer cases detected through PSA testing are more often confined to the prostate than those detected solely by DRE.^{46,47} Currently, 81% of prostate cancers are pathologically organ-confined at time of diagnosis.⁴⁸

Recent screening trials have either used DRE in conjunction with PSA for screening⁴⁹ or as an ancillary test for patients who are found to have an elevated PSA.^{50,51} To elucidate the specific role of DRE in screening for prostate cancer, Gosselaar and colleagues⁵² showed that among those with a serum PSA >3 ng/mL, those with a positive DRE were more likely to have prostate cancer. Furthermore, among 5519 men in the control arm of the PCPT, Thompson and colleagues⁵³ observed that an abnormal DRE increased the probability of cancer detection by

NCCN Guidelines Index
Table of Contents
Discussion

almost 2.5 fold in multivariable analysis; the risk of high-grade disease was increased 2.7 fold with an abnormal DRE.

In a secondary analysis of the PLCO trial, in which participants were screened with PSA and DRE, only 15.4% of men with a suspicious DRE had an elevated PSA. ⁵⁴ On multivariate analysis, suspicious DRE was associated with an increased risk of clinically significant prostate cancer (HR, 2.21; 95% CI, 1.99–2.44; P < .001) and prostate-cancer-specific mortality (HR, 2.54; 95% CI, 1.41–4.58; P = .002). However, PSA was associated with an even greater risk in both cases: clinically significant prostate cancer (HR, 5.48; 95% CI, 5.05–5.96; P < .001) and prostate-cancer-specific mortality (HR, 5.23; 95% CI, 3.08–8.88; P < .001).

A prospective clinical trial in 6630 men directly compared the efficacy of PSA and DRE in the early detection of prostate cancer.⁵⁵ The cancer detection rates were 3.2% for DRE, 4.6% for PSA, and 5.8% for DRE plus PSA. The positive predictive values (PPVs) were 32% for PSA and 21% for DRE.

Overall, the PPV of DRE in men with normal PSA is poor (about 4%–21%). Therefore, an abnormal DRE result alone as an indication for biopsy would lead to a large number of unnecessary biopsies and the detection of many insignificant cancers in men with low PSA values. In fact, in an analysis of 166,104 men with prostate cancer diagnosed between 2004 and 2007 from the SEER database, only 685 (0.4%) had palpable, PSA-occult (PSA level of <2.5 ng/mL), Gleason score 8-10 prostate cancer. Se

Overall, the panel believes that the value of DRE as a stand-alone test for prostate detection is limited, even though DRE picks up some cases of advanced cancer that would otherwise be missed. Therefore, the panel believes that DRE should not be used as a stand-alone test

without PSA testing. Instead, the panel recommends DRE as a complementary test that should be strongly considered with serum PSA in asymptomatic men who had a risk/benefit discussion and decided to pursue screening for prostate cancer. Those with a very suspicious DRE should be considered for biopsy referral regardless of PSA results, because it may identify high-grade cancers in such situations. Furthermore, the panel believes that DRE should be performed in all men with an abnormal serum PSA to aid in decisions regarding biopsy (see *Pre-Biopsy Workup*, below).

Population-Based Screening Studies

Although many trials have been cited with regard to PSA testing, 2 studies are most relevant due to their topicality and randomized design.

ERSPC Trial

The ERSPC involved about 182,000 men between the ages of 50 and 74 years in 7 European countries, randomly assigned to a group that was offered PSA screening at an average of once every 4 years or to a control group that did not receive such screening; DRE or other ancillary tests were also performed in the screening group. 51,59 The predefined core group included 162,388 men aged 55 to 69 years. Death from prostate cancer was the primary outcome. During a median follow-up of 11 years, the cumulative incidence of prostate cancer was 7.4% in the screening group versus 5.1% in the control group. There were 299 prostate cancer deaths in the screening group compared to 462 in the control group. The rate ratio for death from prostate cancer was 0.79 for the screening arm compared to the control arm (95% CI, 0.68–0.91; P =.001). The investigators concluded that the PSA-based screening program reduced mortality from prostate cancer by 21%. At the time of publication, the authors stated that 1055 men would need to be screened and 37 additional men would need to be treated over 11 years

NCCN Guidelines Index
Table of Contents
Discussion

to prevent one prostate cancer death. Modeling the ERSPC data, however, Heijnsdijk and colleagues⁶⁰ estimated that the number needed to screen was 98 and the number needed to treat was 5 to prevent one prostate cancer death.

A report of 13-year follow-up of the ERSPC trial, with 7408 cases of prostate cancer diagnosed in the screening arm and 6107 cases diagnosed in the control arm, confirmed these results. ⁶¹ The unadjusted rate ratio for death from prostate cancer was 0.79 (95% CI, 0.69–0.91) at 13 years. After adjusting for non-participation, the rate ratio of prostate cancer death was 0.73 (95% CI, 0.61–0.88). The authors reported that, for 781 men invited for screening or 27 additional prostate cancers detected, one prostate cancer death could be averted. Furthermore, another analysis of this 13-year data found that fewer men were diagnosed with metastatic disease in the screening arm (incidence rate ratio, 0.60; 95% CI, 0.52–0.70). ⁶²

The apparent risk reduction was also confirmed in an analysis of the Rotterdam section of the ERSPC trial where prostate cancer-specific mortality was reduced by 32%.⁶³ This same group found that if one controlled for noncompliance and nonattendance, the risk of death due to prostate cancer can be reduced by up to 51%.⁶⁴

The Finnish Prostate Cancer Screening Trial, the largest component of ERSPC, reported a small, non-statistically significant reduction in prostate cancer-specific death after 12 years of follow-up.⁶⁵

The Göteborg randomized population-based prostate cancer screening trial was initiated before and independently of the ERSPC, but some of its patients were reported as part of the ERSPC.⁵⁰ Twenty thousand men aged 50 to 64 years were randomized to either a screening group invited for PSA testing every 2 years or to a control group not invited.

The study is ongoing, with men who have not reached the upper age limit invited for PSA testing. In men randomized to screening, 76% attended at least one test. PSA testing in the general population was very low at the beginning (3%), but increased over time. During a median follow-up of 14 years, 1138 men in the screening group and 718 in the control group were diagnosed with prostate cancer, resulting in a cumulative prostate cancer incidence of 12.7% in the screening group and 8.2% in the control group (HR, 1.64; 95% CI, 1.50–1.80; P < .0001). The rate ratio for death from prostate cancer was 0.56 (95% CI, 0.39-0.82; P = .002) in the screening compared with the control group. Overall, 293 men needed to be screened and 12 needed to be diagnosed to prevent one prostate cancer death over 14 years. This study shows that prostate cancer screening is acceptable to the Swedish population and that prostate cancer mortality was reduced almost by half over 14 years. In addition, it should be noted that a cause-specific survival benefit was noted despite the fact that not all cancers were immediately treated. This result suggests that early detection combined with selective treatment based on risk can lower mortality rates without uniform treatment of all cancers.

Eighteen-year follow-up of the Göteborg trial was recently reported, with 1396 cases of prostate cancer in the screening arm and 962 cases in the control arm. ⁶⁶ The reduction in absolute prostate cancer-specific mortality was 0.72 (95% CI, 0.50–0.94). The number needed to invite to prevent one death was 139 and the number needed to diagnose was 13.

There are several possible explanations for the more favorable results of the Göteborg trial compared to the PLCO (see below) or ERSPC trials. First, the patients were younger and less likely to have incurable prostate cancer at first screening; second, there was less contamination of the control arm because PSA testing was uncommon in the Swedish

NCCN Guidelines Index
Table of Contents
Discussion

population when the study began; third, a lower PSA threshold was used for recommending a biopsy; and finally, men were screened more frequently than ERSPC and for a longer period than PLCO. However, because more than half of the participants were included in the main analysis of ERSPC, the Göteborg trial should not be interpreted as a true independent confirmatory study. An analysis of the Göteborg trial showed that the risks of aggressive prostate cancer and prostate-cancer mortality became similar in the screening and control arms 9 years after the cessation of screening.⁶⁷

PLCO Trial

The PLCO study randomized 76,685 men aged 55 to 74 years at 10 U.S. study centers to annual screening (annual PSA for 6 years and DRE for 4 years) or usual care.⁶⁸ After 13 years of follow-up, the incidence rate ratio for the screening arm compared to the control arm was 1.12 (95% CI, 1.07–1.17). The investigators did not find a statistically significant difference between the disease-specific mortality rates of the screening and control groups (RR, 1.09; 95% CI, 0.87–1.36). Results were similar after 15-year follow-up.⁶⁹

Despite the large sample size, this trial was flawed both by prescreening and the high contamination rate of 40% to 52% per year in the control group (ie, 74% of men in the usual care arm were screened at least once). The high contamination rates have been confirmed by others. The estimated mean number of screening PSAs (DREs) was 2.7 (1.1) in the control arm and 5.0 (3.5) in the screened arm. In addition, the biopsy rate for those with elevated serum PSA values was relatively low compared to the European trials. The PLCO trial thus really compared fixed screening versus "opportunistic" screening and, therefore, did not really test the hypothesis that screening with PSA is of

value. However, it did show that yearly screening may be of limited value compared to less frequent testing.⁷²

In a subset analysis reported by Crawford and colleagues,⁷³ a 44% decrease in the risk of prostate cancer-specific death was observed in men with no or minimal comorbidity assigned to screening compared to control, and the numbers needed to screen and treat to prevent one death were 723 and 5, respectively. This benefit was not found among men with one or more significant comorbidities. These results suggest that screening is more useful among men in good health due to the lack of competing cause for mortality. However, others suggest that such analysis is prone to major methodological errors.⁷⁴

Trial Limitations

In addition to the limitations of the PLCO trial noted previously, these randomized controlled trials (RCTs) also share at least three additional limitations. First, they did not address the potential benefit of screening in men with high-risk factors. For instance, <5% of PLCO participants were of African-American descent and only 7% reported a family history of prostate cancer.⁴⁹ Therefore, it is not known whether men at higher risk may benefit more from screening than those at lower risk. Second, many men in these studies underwent sextant prostate biopsies rather than extended core biopsies, the standard diagnostic technique used today. The ERSPC may have underestimated benefit due to advanced age at first PSA test (median above 60), low intensity of screening (largely every 4 years) and, perhaps, suboptimal treatment available in Europe in the 1990s compared to what is available today.

The reduction in prostate cancer mortality must be balanced against the adverse effects of treatment, emphasizing the importance of selective rather than universal treatment of men with prostate cancer identified by screening. ⁶⁰

NCCN Guidelines Index
Table of Contents
Discussion

Practical Considerations of Testing

Age at Which to Initiate Testing

Controversy exists as to the ideal age to begin screening for prostate cancer. Recent randomized trials looking at the impact of screening on prostate cancer mortality have focused primarily on men aged 55 to 69 years. The ERSPC and Göteborg trials reported decreased disease-specific mortality in men aged 55 to 69 and 50 to 64 years, respectively. These results support baseline PSA testing in men aged 50 to 55 years with the strongest evidence supporting testing at age 55. Recent analyses of PSA testing in Swedish men aged 50 to 54 years supports screening in this younger cohort. 75,76

As even younger men were not included in these screening studies, baseline testing at earlier ages has not been evaluated in RCTs. However, observational evidence suggests that baseline testing of men in their 40s and early 50s may have value for future risk stratification, although some would describe the value as marginal. A study by Lilja and colleagues assessed blood collected from 21,277 men in Sweden aged 33 to 50 years who were followed until 2006. Among the 1312 cases of prostate cancer and 3728 controls without prostate cancer, these investigators reported that a single PSA test before age 50 years predicted subsequent prostate cancer up to 30 years later with a robust area under the curve (AUC) of 0.72 (0.75 for advanced prostate cancer).

Another report clarified associations of age with the long-term risks of metastases.⁷⁹ In this study, the risk of prostate cancer death was strongly correlated with baseline PSA in men aged 45 to 49 years and 51 to 55 years; 44% of the deaths in the analytic cohort occurred in men in the highest tenth of the distribution of PSA, suggesting that there may

be a strong rationale for baseline testing in men younger than age 55 years.

In a nested case-control study of men 40 to 59 years of age in the Physicians' Health Study, baseline PSA strongly predicted lethal prostate cancer later in life. ⁸⁰ For example, men aged 55 to 59 years with PSA levels above the 90th percentile had an odds ratio of 6.9 (95% CI, 2.5–19.1) for lethal prostate cancer compared with men whose PSA levels were at or below the median.

Taken together, these results suggest that one could perform early baseline testing and then determine the frequency of testing based on risk. Although many advocate earlier testing only in men thought to be at higher risk due to family history or race, a baseline serum PSA is a stronger predictor of the future risk of the disease compared to either of these risk factors.

Most panel members favor informed testing beginning at age 45 years. Repeat testing at 1- to 2-year intervals is recommended for men who have a PSA value ≥1.0 ng/mL and at 2- to 4-year intervals for men with PSA <1 ng/mL (also see *Frequency of Testing,* below). This value is above the 75th percentile for younger men (<50 years).⁸¹ The median PSA levels are 0.7 ng/mL and 0.9 ng/mL for ages 40 to 49 and ages 50 to 59, respectively.^{82,83}

Frequency of Testing

Current guidelines and recent screening trials have employed varying strategies with regard to the frequency of prostate cancer screening. The ideal screening interval to maximize mortality reduction yet minimize overdiagnosis remains uncertain.

NCCN Guidelines Index
Table of Contents
Discussion

A recent comparison of two centers involved in the ERSPC trial studied the impact of different screening intervals on the diagnosis of interval cancers in men aged 55 to 64 years. ⁸⁴ The Göteborg arm randomized 4202 men to screening every 2 years, while the Rotterdam arm randomized 13,301 men to screening every 4 years with similar follow-up of 11 to 12 years. Compared to screening every 4 years, there was a significant 43% reduction in the diagnosis of advanced prostate cancer (clinical stage >T3a, N1, or M1; PSA >20 ng/mL; Gleason >8 at biopsy) for screening every 2 years. However, there was also a 46% increase in the diagnosis of low-risk prostate cancer (clinical stage T1c, Gleason <6, and PSA <10 ng/mL at biopsy) for screening every 2 years.

Another study using micro-simulation models of prostate cancer incidence and mortality predicted that a strategy that utilizes biennial intervals in men with average PSA levels and longer screening intervals (every 5 years) for men with low PSA levels (below median for age by decade) allows a 2.27% risk of prostate cancer death compared to 2.86% from no screening. In addition, compared to annual screening and using a biopsy threshold of 4.0 ng/mL, the biennial strategy also projected a relatively lower overdiagnosis rate of 2.4% (vs. 3.3% for annual screening), a 59% reduction in total tests, and a 50% reduction in false-positive results. The biennial model was robust to sensitivity analyses, which varied the range of cancer incidence and survival attributed to screening.

Few studies have addressed the effect of PSA levels on the interval of testing, but it appears that men with a very low PSA could safely extend the testing interval. In the Rotterdam section of the ERSPC trial, men with a PSA <1 ng/mL had a very low risk for cancer at 4 and 8 years (0.23% and 0.49%).⁸⁶ Other studies have shown that PSA values at younger ages strongly predict the development of or death from prostate cancer.^{83,87} For example, in a Swedish case-control study of

1167 men, those aged 60 years with PSA concentrations of \leq 1 ng/mL had only a 0.5% risk of metastasis by age 85 and a 0.2% risk of death from prostate cancer.⁸⁷

After considering these data, the panel concluded that tailoring screening intervals based on PSA levels might maximize survival advantage while decreasing the number of screenings and limiting overdiagnosis. The panel recommends repeat testing every 2 to 4 years if PSA is <1 ng/mL and every 1 to 2 years if PSA is 1 to 3 ng/mL in men aged 45 to 75 years. The panel notes that a younger man on the higher end of PSA (eg, a 45-year-old man with PSA 0.9 ng/mL) might be screened in 2 years, whereas an older man with a lower PSA might be screened in 4 years. Clinical judgment should be used.

Age at Which to Discontinue Testing

Even more elusive than identifying the ideal age at which to start screening is determining the ideal age at which to discontinue screening for men with normal PSA levels.

Panelists uniformly agreed that PSA testing should only be offered to men with a 10 or more year life expectancy. However, panelists did not agree as to when to discontinue routine testing in asymptomatic older men. Furthermore, estimates of life expectancy can be refined using several resources such as life insurance tables.⁸⁸⁻⁹⁰ Physicians may not be accurate at estimating life expectancy and many tend to over-value age and under-value comorbidity.^{91,92}

Since the previously cited RCTs (ERSPC, PLCO, and Göteborg) observed benefits to testing only in men aged up to 70 years, several panelists favored stopping testing at age 70 years.

NCCN Guidelines Index Table of Contents Discussion

However, other data would suggest a benefit to screening beyond 70 years. A study of 4561 men who underwent radical prostatectomy found that men older than 70 years were more likely to have higher grade and stage of disease and worse survival compared to their younger counterparts.93 Others have published similar findings.94

To assess the appropriate ages for discontinuing screening, the previously cited micro-simulation model⁸⁵ predicted that decreasing the stopping age from 74 to 69 years would lead to a 27% relative reduction in the probability of life saved, but an almost 50% reduction in the probability of overdiagnosis. This latter finding reflects the fact that a large proportion of men older than 70 years have cancer that would be unlikely to diminish their life expectancy, and that screening in this population would substantially increase rates of overdetection, while also recognizing the increased prevalence of higher-risk cases in this age that could benefit from earlier detection.

The micro-simulation model also assessed a strategy of screening men up to age 74 years while simultaneously increasing the PSA threshold for biopsy based on age-dependent PSA levels (ie, increasing the threshold level for biopsy with increasing age). Compared to using a uniform cut-off of 4.0 ng/mL, this strategy reduced the rate of overdiagnosis by one third while only slightly altering lives saved.

tPSA at certain ages may predict future risk. Vickers and colleagues⁸⁷ examined the relationship between baseline PSA at age 60 years and the future risk of prostate cancer death or metastases and found that those with PSA level below the median (<1 ng/mL) were unlikely to develop clinically significant prostate cancer (0.5% risk of metastases and 0.2% risk of prostate cancer death) and may not need further testing. Similarly, in a study of 849 men in the Baltimore Longitudinal Study of Aging (BLSA), no men aged 75 to 80 years with a PSA <3.0

ng/mL died of prostate cancer.95 Moreover, the time to death or diagnosis of aggressive prostate cancer was longer in men with a PSA <3.0 ng/mL versus those with a PSA >3.0 ng/mL, suggesting that men 75 years or older with a PSA <3.0 ng/mL are unlikely to die or experience aggressive prostate cancer throughout their remaining life and may safely discontinue screening.

In summary, many possible strategies to reduce overdiagnosis in the older population exist. At this time, the panel supports screening in men until age 75. Continuing screening beyond this age should be only in very select patients (category 2B). Those with PSA <4 ng/mL, normal DRE (if done), and no other indications for biopsy can undergo repeat testing at 1- to 4-year intervals, again only in very select patients. Those with PSA ≥4 ng/mL or a very suspicious DRE should be considered for biopsy as indicated in the guidelines. The panel notes that although some men in this older age group present with high-risk disease, very few men older than age 75 years benefit from PSA screening.

Screening in High-Risk Populations

African-American men and men with a first-degree relative with prostate cancer (especially cancer found at a younger age) have a higher risk of developing prostate cancer. 96-103 In fact, having a first-degree relative with prostate cancer diagnosed before the age of 60 increases the likelihood of a prostate cancer diagnosis by 2.1- to 2.5-fold. 99,100 In fact, a population-based study in Sweden found that the risk for the development of prostate cancer increased with the number of affected relatives.¹⁰⁴ Data, however, suggest that prostate cancer in men with a family history of prostate cancer is not more likely to be aggressive, and cancer-specific outcomes are similar between those with and without a family history. 102,105,106

NCCN Guidelines Index
Table of Contents
Discussion

African-American men have a 64% higher incidence of prostate cancer and a 2.3-fold increase in prostate cancer mortality compared with Caucasian men. 96,107 Furthermore, autopsy data indicate that prostate cancer may undergo transformation to aggressive disease earlier in African-American men than in white men. 107 In addition, data suggest that African-American men have an earlier onset of prostate cancer. An analysis of SEER data from 2010 found that non-Hispanic African-American men are diagnosed with prostate cancer an adjusted average of 1.2 years earlier than non-Hispanic white men; 108 whereas an older SEER analysis found that African-American men were diagnosed at an average of 3 years younger than white men. 109 A retrospective, population-based cohort study in the United Kingdom found that men of African descent were diagnosed an adjusted average of 5.1 years earlier than white men. 110 Another study estimated that African-American men have an almost 2-fold higher risk of being diagnosed with prostate cancer before the age of 45 than white men. 109 In addition, a recent study of 41,250 men in the Veterans Affairs (VA) Health Care System database found that the optimal PSA threshold for predicting the diagnosis of prostate cancer within 4 years was lower in African-American men than in Caucasian men (1.9 ng/mL vs. 2.5 ng/mL).¹¹¹ Finally, modeling studies indicate that African-American men likely have higher incidence of preclinical disease and an increased risk of metastatic progression than Caucasian-American men. 112

Factors that contribute to this racial disparity may include differences in genetic risk factors, environmental exposures, and patient and physician behaviors; decreased access to high-quality health care including cancer early detection and follow-up care; delays in diagnosis; and suboptimal treatment.¹¹³⁻¹¹⁷

Prostate cancer screening has been best studied in Caucasian men; data on screening in diverse and high-risk populations are lacking. In

the PLCO trial, approximately 4.4% of the participants were African American and 6.9% had a positive family history, but no subset analyses were performed.⁴⁹ In the ERSPC trial, no information on race or family history was reported.⁵¹

In conclusion, African-American men and men with a family history of prostate cancer represent high-risk groups. However, the panel believes that current data are insufficient to definitively inform the best strategy for prostate cancer screening in these populations and also note that a baseline PSA value is a stronger predictive factor than a positive family history or race. Overall, the panel believes that it is reasonable for African-American men and those with a strong family history to begin discussing PSA screening with their providers earlier than those without such risk factors and to consider screening at annual rather than less frequent screening intervals.

Prostate Cancer Risk in Genetic Syndromes

Recent data indicate that men with prostate cancer may have germline mutations in 1 of 16 DNA repair genes: *BRCA2* (5%), *ATM* (2%), *CHEK2* (2%), *BRCA1* (1%), *RAD51D* (0.4%), *PALB2* (0.4%), *ATR* (0.3%), and *NBN*, *PMS2*, *GEN1*, *MSH2*, *MSH6*, *RAD51C*, *MRE11A*, *BRIP1*, or *FAM175A*.¹¹⁹ Men with these inherited syndromes have an increased risk for prostate cancer. For example, men with Lynch syndrome (germline mutations in *MLH1*, *MSH2*, *MSH6*, *PMS2*, or *EPCAM*) have a 2- to 5.8-fold increase in risk for prostate cancer. ¹²⁰⁻¹²⁵ Age of onset and aggressiveness of prostate cancer in these individuals, however, do not generally appear to be different than in sporadic cases. ^{121,124} Currently, the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal (available at www.NCCN.org) do not list any specific prostate cancer screening recommendations for men with Lynch syndrome.

NCCN Guidelines Index
Table of Contents
Discussion

Carriers of the G84E mutation of the *HOXB13* gene also have a significantly higher risk for prostate cancer and are more likely to have early-onset familial disease. HOXB13 mutations are more frequent among families of Scandinavian heritage.

Germline *BRCA1* and *BRCA2* mutations (associated with hereditary breast and/or ovarian cancer syndrome) have been associated with an increased risk for prostate cancer in numerous reports. ¹²⁸⁻¹³⁷ In particular, *BRCA2* mutations have been associated with a 2- to 6-fold increase in the risk for prostate cancer, whereas the association of *BRCA1* mutations and increased risks for prostate cancer are less consistent. ^{129,131,132,137-139} Furthermore, prostate cancer in men with germline *BRCA* mutations appears to occur earlier, has a more aggressive phenotype, and is associated with significantly reduced survival times than in non-carrier patients. ¹⁴⁰⁻¹⁴⁵ Among lethal prostate cancer cases, 60% of mutation carriers of *BRCA1/2* and *ATM* report a negative family history. ¹⁴²

Results from the first round of screening of the IMPACT study, which enrolled men aged 40 to 69 years with germline BRCA1/2 mutations and a control group of men with wild-type BRCA1/2 who are related to mutation carriers, were recently reported. Whereas no difference between carriers and controls in the rate of prostate cancer detection or the PPV of biopsy for detecting cancer in men with PSA >3.0 ng/mL was evident, a significant difference was seen in the PPV of biopsy for detecting intermediate/high-grade cancer in BRCA2 carriers with PSA >3.0 ng/mL (2.4% vs. 0.7%; P = .04). Future rounds of screening in this trial may help inform the best strategy for screening in this high-risk population.

The V.2.2017 NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian (available at www.NCCN.org)

recommend that men with *BRCA2* mutations start prostate cancer screening at age 45 and that men with *BRCA1* mutations consider the same. At this time, the NCCN Prostate Cancer Early Detection panel also believes that data supporting a change in the PSA screening and biopsy recommendations for men with germline *BRCA1/2* mutations relative to men without mutations are insufficient for them to have separate screening recommendations. The panel recommends inquiring about known personal or familial *BRCA1/2* mutations. If there is a known or suspected cancer susceptibility gene, referral to a cancergenetics professional is recommended.

In addition, patients who meet hereditary risk assessment criteria established in the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian and the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal (available at www.NCCN.org) should be referred for genetic counseling/testing as appropriate. Commercial panels are now available to assess most of the main high-penetrance prostate cancer risk genes (BRCA1, BRCA2, ATM, MLH1, MSH2, MSH6, and HOXB13, CHEK2, NBN, PALB2, RAD51D, and TP53). Information regarding BRCA1/2 gene status and the status of other high-risk genes should be used as part of the discussion about prostate cancer screening; patients may not be aware of the increased risk for prostate cancer associated with such mutations.

Indications for Biopsy

The previously cited RCTs used PSA thresholds to prompt a biopsy. PSA cut-points for biopsy varied somewhat between centers and trials over time. Although a serum PSA of 2.5 ng/mL has been used by many, a level of 3 ng/mL is supported by the trials and would more robustly limit the risk of overdetection. However, some panel members did not

NCCN Guidelines Index
Table of Contents
Discussion

recommend limiting the option of biopsy to pre-specified PSA thresholds, noting that there are many other factors (eg, age, race, family history, PSA kinetics) that should also inform the decision to perform biopsy.

The panel does not believe that DRE alone should be an absolute indication for biopsy in men with low PSA. The PPV of DRE in men with low PSA is poor (see *DRE*, above).^{57,147} However, a very suspicious DRE, independent of PSA, could be an indication of high-grade cancer in men with normal PSA values, and therefore biopsy can be considered. Clinical judgment should be used.

Pre-Biopsy Workup

The panel recommends that any man with a PSA >3 ng/mL undergo workup for benign disease, a repeat PSA, and a DRE (if not performed during initial risk assessment) to inform decisions about whether to proceed with transrectal ultrasound (TRUS)-guided biopsy. A DRE in this setting of elevated PSA has a high predictive value, ⁵² and the panel strongly recommends biopsy in these men. The roles of imaging and biomarker testing to inform biopsy decisions are discussed in detail below. The predictive value of biomarkers has not been correlated with that of multiparametric MRI. Therefore, it is not known how such tests could be applied in optimal combination.

Men who do not undergo a TRUS-guided biopsy should be followed up in 6 to 12 months with PSA and DRE. Patients with a persistent and significant increase in PSA should be encouraged to undergo biopsy.

Risk Calculators

Prostate cancer risk calculators have been developed to estimate an individual's risk for prostate cancer from multiple factors. Common calculators are the Sunnybrook-, ERSPC-, and PCPT-based risk

calculators.^{53,148-152} These online tools combine clinical variables—including but not limited to age, family history, race, DRE, and PSA—to estimate both the risk for biopsy-detectable prostate cancer and the risk for biopsy-detectable high-grade prostate cancer. Such information potentially allows for more informed decision-making.¹⁵³ However, such calculators have not been assessed in RCTs, and cut-points of risk associated with reductions in prostate cancer mortality remain unknown. Such calculators have as much value in determining who might not need biopsy as in identifying those at higher risk. At this time, the panel does not recommend the use of risk calculators alone to determine whether biopsy is indicated. Clinical judgment and patient preferences need to be taken into consideration.

Imaging

The Prostate Imaging Reporting and Data System (PI-RADS) from the American College of Radiology gives recommendations for high-quality MRI in prostate cancer care, including recommendations related to the use of MRI to direct targeted biopsies. ¹⁵⁴ In addition, the European Society of Urogenital Radiology established guidelines for optimal multiparametric MRI of the prostate, including for detection and targeted biopsies. ¹⁵⁵ Overall, the panel emphasizes the need for high-quality MRI and for radiologic expertise for optimal reading of scans.

Novel Imaging Techniques

There is considerable interest in the use of novel MRI imaging, most notably multiparametric MRI, to select those who need a prostate biopsy or to guide needle placement during the biopsy. ¹⁵⁶⁻¹⁶² The goals of using MRI to inform the decision to perform biopsy include reducing the number of men undergoing biopsy, reducing the detection of indolent disease (and thus the risks of overdetection and overtreatment), and improving the detection of clinically significant

NCCN Guidelines Index
Table of Contents
Discussion

disease through targeted biopsies. Current data, however, do not conclusively show that MRI achieves these goals in the initial biopsy setting.

In a prospective study of 223 biopsy-naïve men with elevated PSA, all men had standard TRUS biopsies in addition to multiparametric MRI. 158 Participants with suspicious or equivocal lesions (PI-RADS 3-5) then underwent MRI-guided biopsy. TRUS biopsies detected 126 of 142 cases of cancer (88.7%), including 47 cases classified as low risk. The MRI-guided biopsies identified an additional 16 cases of intermediate/high-risk prostate cancer and led to the reclassification of 13 cases from low risk to intermediate/high risk. Thus, the addition of multiparametric MRI with targeted biopsies for suspicious or equivocal lesions to standard biopsy allowed the identification of clinically significant disease in an additional 13% of the study population. The authors also determined the effects of using multiparametric MRI to decide whether to biopsy. Not biopsying men with PI-RADS 1/2 would reduce the number of men requiring biopsy by 36%, reduce the identification of low-risk prostate cancer by 87%, and increase the yield of intermediate/high-risk tumors by 18%, but would have missed 15 intermediate/high-risk tumors (6.7% of study population).

A single-center trial randomized 130 biopsy-naïve men to a control group that received TRUS-guided random biopsy alone or to a group that received prebiopsy multiparametric MRI, TRUS-guided random biopsy, and cognitive MRI/TRUS fusion targeted biopsy. ¹⁶⁰ The primary outcome was not met, with similar rates of detection of prostate cancer (64% vs. 57%; P = .5) and of clinically significant cancer (55% vs. 45%; P = .8) in the two arms.

In a prospective cohort study of 1003 men with elevated PSA or abnormal DRE and lesions visible on multiparametric MRI undergoing both MRI/ultrasound (US) fusion-targeted and standard biopsy, Siddiqui and colleagues noted that the targeted biopsy strategy was associated with increased detection of high-risk (Gleason sum $\geq 4 + 3$) cancer and decreased detection of low-risk (Gleason sum 6 or low-volume 3 + 4 = 7) cancer. Additional clinical trials are underway to assess the value of MRI imaging for diagnosis in the pre-biopsy setting (eg, NCT02131207).

In a multicenter, paired-cohort study, 576 men with elevated PSA <15 ng/mL underwent multiparametric MRI followed by TRUS biopsy and template prostate mapping biopsy. ¹⁶⁴ Forty percent were diagnosed with clinically significant prostate cancer, defined as Gleason score ≥4 + 3 or a maximum cancer core length 6 mm or longer by template prostate mapping biopsy. The sensitivity and specificity of multiparametric MRI for the detection of clinically significant prostate cancer were 93% (95% CI, 88%–96%) and 41% (95% CI, 36%–46%), whereas the sensitivity and specificity of TRUS-guided biopsy were 48% (95% CI, 42%–55%) and 96% (95% CI, 94%–98%). Thus, in this study, using a negative multiparametric MRI to avoid biopsy in men with elevated PSA would have allowed 27% of patients to avoid biopsy and would have resulted in a 5% decrease in the diagnosis of clinically insignificant cancers. Clinically significant cancer would have been missed in 17 patients (3%).

Other studies have similarly shown that the use of multiparametric MRI can reduce the number of negative biopsies in either the initial or repeat biopsy settings. 165-168

At this time, the panel believes that the use of multiparametric MRI can be considered prior to TRUS-guided biopsy to inform biopsy decisions and to help identify regions of the prostate that may harbor cancer.

NCCN Guidelines Index
Table of Contents
Discussion

However, the panel cautions that false negatives can occur and proceeding to TRUS-guided biopsy should still be an option.

The panel does not uniformly recommend that MRI-guided targeted biopsies be used in place of or in addition to standard 12-core TRUS biopsies in the initial biopsy setting (see *Targeted Biopsy Techniques for Initial Biopsy,* below). More information is needed in such a setting. However, the panel believes that multiparametric MRI may help identify regions of cancer missed on prior biopsies and should be considered in selected cases of men with at least 1 negative biopsy (also see *Repeat Biopsies*, below). ¹⁶⁹

Biomarker Testing: PSA Derivatives and Other Tests

When the first recommendations for early detection programs for prostate cancer were made, serum tPSA was the only PSA-based test available. PSA derivatives and other assays exist that potentially improve the specificity of testing and thus may diminish the probability of unnecessary biopsies.

When a patient meets the standards for biopsy, sometimes the patient and physicians wish to further define the probability of cancer before proceeding to biopsy with its associated risks (see *Risks of Biopsy*, below). Several biomarker tests have been developed with the goals of refining patient selection for biopsies, decreasing unnecessary biopsies, and increasing the specificity of cancer detection, without missing a substantial number of higher-grade (Gleason ≥7) cancers. These tests may be especially useful in men with PSA levels between 3 and 10 ng/mL. Most often, these tests have been used in patients who have had one negative biopsy to determine if repeat biopsy is an appropriate consideration.

The panel recommends consideration of percent free PSA (%f PSA), Prostate Health Index (PHI), and 4Kscore[®], in patients with PSA levels >3 ng/mL who have not yet had a biopsy. %f PSA, PHI, 4Kscore, PCA3, and ConfirmMDx may also be considered for men who have had at least one prior negative biopsy and are thought to be at higher risk. It should be pointed out that multiparametric MRI is also a consideration in these same patients.

Head-to-head comparisons have been performed in Europe for some of these tests, used independently or in combinations in the initial or repeat biopsy settings, but sample sizes were small and results varied. Therefore, the panel believes that no biomarker test can be recommended over any other at this time. Furthermore, a biomarker assay can be done alone or in addition to multiparametric MRI/refined biopsy techniques in the repeat biopsy setting (discussed below). The optimal order of biomarker tests and imaging is unknown; and it remains unclear how to interpret results of multiple tests in individual patients—especially when results are contradictory. Results of any of these tests, when performed, should be included in discussions between clinician and patient to assist in decisions regarding whether to proceed with biopsy. These and other tests are discussed below.

Age- and Race-Specific PSA Reference Ranges

Age-specific PSA reference ranges were introduced by Oesterling and colleagues¹⁸³ as a method to increase cancer detection (ie, increase sensitivity) in younger men by lowering PSA cutoffs for biopsy and to decrease unnecessary biopsies (ie, improve specificity) in older men by increasing PSA cutoffs.¹⁸³⁻¹⁸⁵ Several groups have investigated these age-specific ranges with equivocal results. Others have suggested race-specific reference ranges.¹⁸⁶ However, the exact roles of these age- and race-specific PSA cutoffs in the early detection of prostate

NCCN Guidelines Index
Table of Contents
Discussion

cancer remain unclear. The panel has no recommendations regarding routine use of these ranges.

PSAV

The rate of change in PSA over time is broadly termed PSA velocity (PSAV), determined by at least 3 separate PSA values calculated over at least an 18-month period. Carter and colleagues ¹⁸⁷ first showed that PSAV is greater in men eventually diagnosed with prostate cancer than in men not diagnosed with the disease and suggested its use as a screening tool. In a subsequent study of 980 men enrolled in the BLSA, Carter and colleagues explicitly linked PSAV with the risk of prostate cancer death by observing that PSAV recorded 10 to 15 years before cancer diagnosis (commonly with PSA <4 ng/mL) was associated with disease-specific survival up to 25 years later: the relative risk of prostate cancer death was higher in men with PSAV >0.35 ng/mL/y compared to those with PSAV \leq 0.35 ng/mL/y (RR, 4.7; 95% CI, 1.3–16.5; P = .02). These data provide support that PSAV may help identify lethal cases. However, the small number of deaths from prostate cancer (20) precludes definitive conclusions.

In two other studies of men with prostate cancer, ^{189,190} very high PSAV (>2 ng/mL/y) during the year before diagnosis was associated with a greatly increased risk of death from the disease, but this is a much higher cutoff for PSAV than the one proposed by Carter and colleagues.

Vickers and colleagues, ¹⁹¹ however, have questioned the role of PSAV in tumor detection among men with low PSA levels. The analysis was performed on 5519 men undergoing biopsy regardless of indication in the control arm of the PCPT to explore the additional yield from a PSAV threshold of 0.35 ng/mL/y. The main finding of this study was that PSAV did not significantly increase the predictive accuracy of high PSA levels or positive DRE and might substantially increase the number of men

recommended for biopsy. However, these findings should be applied only to men similar to those studied in PCPT (≥55 years of age; 96% Caucasian-American; 17% family history of prostate cancer; PSA values ≤3 at enrollment).⁵³ A recent report suggests that screening strategies that utilized PSAV at low PSA levels were more likely to suffer from overdiagnosis and false-positive tests resulting in more harm relative to incremental lives saved.⁸⁵

Panelists disagree as to the value of PSAV alone as a criterion for considering biopsy when the PSA level is low (<2.0 ng/mL). Due to its potential capacity to identify tumors with lethal potential, most panelists agree that PSAV (PSAV ≥0.35 ng/mL/y) is only one criterion to consider when deciding whether to perform biopsy for men with low PSA levels. Panelists do not agree as to the threshold of PSAV that should prompt consideration of biopsy, but agree that high PSAV alone, at low PSA levels, does not mandate biopsy, but rather should aid in the decision-making process. Other factors such as age, comorbidity, race, and family history also should be considered.

In a recently reported study of men pursuing a second biopsy after an initial negative biopsy, PSAV was an independent predictor of overall prostate cancer, intermediate-grade cancer, and high-grade cancer. ¹⁹²

Panelists would also like to draw attention to the following caveats: the predictive value of PSAV can be influenced by PSA level;^{53,189,193} PSAV is not useful in patients with very high (>10 ng/mL) PSA values;¹⁹⁴ PSAV measurements can be confounded by prostatitis, a condition that can cause dramatic and abrupt increases in PSA levels;¹⁹⁵ and fluctuations among measurements can occur as a result of either laboratory interassay variability related to the use of different commercially available sources or individual biological variability. Thus, an abnormal PSA result should be confirmed by retesting.

NCCN Guidelines Index
Table of Contents
Discussion

%f PSA

Unbound or free PSA (fPSA), expressed as a ratio of tPSA, is a clinically useful molecular form of PSA, with the potential to improve early detection, staging, and monitoring of prostate cancer. Several molecular forms of PSA are known to circulate in the blood. In most men, the majority (60%–90%) of circulating PSA is covalently bound to endogenous protease inhibitors. Most immunoreactive PSA is bound to the protease inhibitor alpha-1-antichymotrypsin. Other immunoreactive PSA-protease inhibitor complexes, such as alpha-1-antitrypsin and protease C inhibitor, exist at such low serum concentrations that their clinical significance has not been determined. In addition, a large proportion of PSA is complexed with alpha-2-macroglobulin (AMG). Unfortunately, this PSA-AMG complex cannot be measured by conventional assays because of the shielding (or "caging") of PSA antigenic epitopes by AMG.

Most clinical work investigating the use of the molecular forms of PSA for early detection of prostate cancer has focused on the percentage of PSA found circulating in the free or unbound form. Numerous studies have shown that the percentage of serum fPSA (%f PSA) is significantly lower in men who have prostate cancer compared with men who do not.

The FDA approved the use of %f PSA for the early detection of prostate cancer in men with a normal DRE and PSA levels between 4 ng/mL and 10 ng/mL (PSA levels where most secondary testing is done). The multi-institutional study that characterized the clinical utility of this assay showed that a 25% fPSA cutoff detected 95% of prostate cancers while avoiding 20% of unnecessary prostate biopsies. ¹⁹⁶

Since its approval by the FDA, testing for %f PSA has gained widespread clinical acceptance in the United States, specifically for

patients with normal DREs who have previously undergone prostate biopsy because they had a tPSA level within the "diagnostic gray zone."

cPSA

PSA exists in free and several complexed forms. Direct measurement of the complexed form with alpha-1-antichymotrypsin is now available. For practical purposes, tPSA consists essentially of fPSA and the alpha-1-antichymotrypsin complexed form (cPSA). The threshold levels are therefore not equivalent: cPSA levels of 2.2 ng/mL and 3.4 ng/mL are equivalent to tPSA levels of 2.5 ng/mL and 4.0 ng/mL, respectively. In a multicenter trial of 831 men, of whom 313 had prostate cancer, researchers found that cPSA in the range of 80% to 95% sensitivity thresholds increased specificity compared with tPSA. 197 Results were similar for percent cPSA and percent fPSA.

Therefore, the ratio of cPSA to tPSA should provide information comparable to the fPSA to tPSA ratio. Other studies also demonstrated an enhanced specificity of cPSA within certain tPSA ranges. Use of cPSA has been approved as an aid in the detection of prostate cancer in men aged 50 years or older in conjunction with DRE. However, because cPSA has not gained widespread acceptance in day-to-day clinical practice, it has not been incorporated into these algorithms.

PSAD

PSA density (PSAD) requires the measurement of prostate volume by TRUS and is expressed as the PSA value (in ng/mL) divided by prostate volume (in cc).

PSAD is a means of discriminating prostate cancer from BPH: the lower the PSAD, the greater the probability of BPH. 202,203 Thus, PSAD potentially identifies men who do not have prostate cancer but have

NCCN Guidelines Index
Table of Contents
Discussion

high PSA secondary to large-volume prostates. A PSAD cutoff of 0.15 ng/mL/cc was recommended in earlier studies, which spared as many as 50% of men from unnecessary biopsies. However, some subsequent studies have reported that the 0.15 cutoff has insufficient sensitivity.²⁰⁴

More recent studies have tried to improve upon the performance of PSAD by using cPSA²⁰⁵ or fPSA²⁰⁶ in the numerator or correcting the denominator for transition zone volume.²⁰⁷ The clinical utility of these methodologies remains unclear.

PSAD has also been shown to correlate with prostate cancer presence and aggressiveness, and may predict adverse pathology and biochemical progression after treatment.^{208,209}

The lack of precision of measurement of both PSA and prostate volume has prevented the widespread clinical acceptance of PSAD. In addition, studies have shown that %f PSA provides results comparable to PSAD in early-detection algorithms.²¹⁰

While the panel recognizes that PSAD may explain an elevated PSA value considered after negative biopsies, it has not incorporated PSAD into the early detection guidelines as a baseline measure because PSAD alone may offer little added benefit over other tests and requires US. Still, the panel agrees that PSAD has been clinically under-utilized and may be considered in evaluating patients, especially those who have had prior US-determined measurements of prostate volume.

PCA₃

PCA3 is a noncoding, prostate tissue-specific RNA that is over-expressed in prostate cancer. Current assays quantify PCA3 over-expression in post-DRE urine specimens. PCA3 appears most useful in determining which patients should undergo a repeat biopsy.²¹¹⁻²¹⁴ For

example, in a prospective multicenter clinical study of 466 men with at least 1 prior negative prostate biopsy, a PCA3 score cutoff of 25 showed sensitivity of 78%, specificity of 57%, negative predictive value (NPV) of 90%, and PPV of 34%.²¹¹ Men with a score of ≥25 were 4.6 times more likely to have a positive repeat biopsy than those with a score <25.

Results were reported from an NCI Early Detection Research Network (EDRN) validation study of the PCA3 urinary assay in 859 men scheduled for a diagnostic prostate biopsy in 11 centers. The primary outcomes were reported at a PPV of 80% (95% CI, 72%–86%) in the initial biopsy setting and an NPV of 88% (95% CI, 81%–93%) in the repeat biopsy setting. Based on the data, use of PCA3 in the repeat biopsy setting would reduce the number of biopsies by almost half, and 3% of men with a low PCA3 score would have high-grade prostate cancer that would be missed. In contrast, the risk of high-grade disease in men without prior biopsy with a low PCA3 is 13%. Thus, the panel believes that this test in not appropriate to use in the initial biopsy setting.

The FDA has approved the PCA3 assay to help decide, along with other factors, whether a repeat biopsy in men age 50 years or older with one or more previous negative prostate biopsies is necessary. This assay is recommended for men with previous negative biopsy in order to avoid repeat biopsy by the Molecular Diagnostic Services Program (MolDX) and is therefore covered by CMS (Centers for Medicare & Medicaid Services) in this setting.

PHI

The PHI is a combination of the tPSA, fPSA, and proPSA tests.²¹⁶⁻²¹⁸ In a multicenter study, it was noted to have approximately double the sensitivity of fPSA/tPSA for cancer detection in those with serum PSA

NCCN Guidelines Index
Table of Contents
Discussion

concentrations between 2 and 10 ng/mL.²¹⁹ In addition, the PHI correlated with cancer grade and had an AUC of 0.72 for discrimination of high-grade (Gleason ≥7) cancer from low-grade cancer or negative biopsy. Another prospective cohort study calculated an AUC of 0.815 for the detection of high-grade (Gleason score ≥7) prostate cancer.²²⁰ This study determined the optimal cutoff of PHI to be a score of 24, which should lead to 36% of biopsies avoided with approximately 2.5% of high-grade cancers missed. Other studies have also shown that PHI can predict aggressive prostate cancer and has potential clinical utility.^{182,221-223}

The PHI was approved by the FDA in 2012 for use in those with serum PSA values between 4 and 10 ng/mL.

4Kscore®

The 4Kscore test is another combination test that measures fPSA and tPSA, human kallikrein 2 (hK2), and intact PSA and also considers age, DRE results, and prior biopsy status. ^{224,225} This test reports the percent likelihood of finding high-grade (Gleason ≥7) cancer on biopsy. A prospective multi-institutional U.S. trial of 1012 patients showed that 4Kscore results have a high discrimination value (AUC, 0.82). ²²⁶ In this study, using a threshold for biopsy of ≥15% risk allowed for 591 biopsies to be avoided (58%), while 183 high-grade tumors were detected and 48 high-grade tumors (4.7% of the 1012 participants) were missed. When 4Kscore was examined in 6129 men in another prospective study, the AUC was also 0.82 (95% CI, 0.80–0.84). ²²⁷ Using a 6% risk of high-grade cancer as a cutoff, 428 of 1000 men could avoid biopsy, with 119 of 133 high-grade cancers detected and 14 of 133 missed. A multicenter clinical utility study found a 65% reduction in prostate biopsies with use of the 4Kscore test. ²²⁸ In addition, a

correlation between 4Kscore risk category and Gleason score was seen (P < .01).

The panel consensus is that the test can be considered for patients prior to biopsy and for those with prior negative biopsy for men thought to be at higher risk for clinically significant prostate cancer. It is important for patients and their urologists to understand, however, that no optimal cut-off threshold has been established for the 4Kscore. If a 4Kscore test is performed, the patient and his urologist should discuss the results to decide whether to proceed with a biopsy. However, the 4Kscore test is not FDA approved; instead it is considered a Laboratory Developed Test through one CLIA-accredited testing laboratory in Nashville, TN. This assay has received a preliminary negative review by MoIDX and is therefore not covered by CMS at this time.

ConfirmMDx

ConfirmMDx is a tissue-based, multiplex epigenetic assay that aims to improve the stratification of men being considered for repeat prostate biopsy. Hypermethylation of the promoter regions of *GSTP1*, *APC*, and *RASSF1* are assessed in core biopsy tissue samples. The test, performed in one CLIA-certified laboratory, is not FDA approved.

The European MATLOC study blindly tested this assay in archived tissue from 498 men with negative biopsies who had repeat biopsies within 30 months. ²²⁹ The NPV was 90% (95% CI, 87%–93%). In multivariate analysis, ConfirmMDx was predictive of patient outcome (OR, 3.17; 95% CI, 1.81–5.53). A similar validation study was performed in the United States using archived tissue from 350 men with negative biopsies who had repeat biopsies within 24 months. ²³⁰ The NPV was 88% (95% CI, 85%–91%), and the test was again found to be predictive of outcomes on multivariate analysis (OR, 2.69; 95% CI, 1.60–4.51).

NCCN Guidelines Index
Table of Contents
Discussion

The panel believes that ConfirmMDx can be considered as an option for men contemplating repeat biopsy because the assay may identify individuals at higher risk of prostate cancer diagnosis on repeat biopsy. This assay is approved for limited coverage by MolDX for the reduction of unnecessary repeat prostate biopsies.

Additional Biomarker Tests

The list of assays with the potential to permit improved detection of Gleason score ≥7 prostate cancers as an adjuvant to PSA screening is growing rapidly. Below, several of these assays are discussed. Given the lack of validation of the models/algorithms in additional, independent publications, their unclear behavior in other screened populations, and the lack of clarity regarding the incremental value and cost effectiveness of these assays, however, the panel cannot recommend their routine use at this time. Furthermore, potential sources of error in these approach include undetected cancers, as high as 25%, in patients with a single negative prostate biopsy. Other significant and unaddressed issues include the well-known upgrading (32%-49%) that occurs in patients with Gleason 6 cancer at biopsy at the time of pathologic assessment of the surgical specimen. Longer term follow-up of the cohorts to determine whether missed prostate cancers were ultimately detected is needed. In addition, validation of these tests in other cohorts of men is needed before they can be accepted as alternatives to (or perhaps preferable to) other tests, described above.

ExoDx Prostate(IntelliScore)

ExoDx *Prostate(IntelliScore)*, also call EPI, evaluates a urine-based 3-gene exosome expression assay utilizing *PCA3* and *ERG* (V-ets erythroblastosis virus E26 oncogene homologs) RNA from urine, normalized to *SPDEF* (SAM pointed domain-containing Ets transcription factor). The background for these markers is supported by a number of

studies, but the application to exosome detection is unique.²³¹ This gene panel proposes to discriminate prostate cancer with a Gleason score of ≥7 from that with a Gleason score of 6 and benign disease at initial biopsy. The population for which use of the assay was intended to be used includes patients older than 50 years with no prior biopsy and a PSA value between 2 and 10 ng/mL. In a recent study by McKiernan et al, estimates of the AUC were similar in the training (0.74) and validation (0.71) cohorts for the assay, with significant improvements when the test was added to standard-of-care variables alone.²³² Applying a cutoff value from the training cohort to serve as a threshold for biopsy in the validation cohort decreased the need for biopsy by 27% (138 of 519) while missing 8% (12 of 148) of Gleason score ≥7 cancers. The investigators propose this assay as a secondary or reflex test for risk stratification in conjunction with PSA screening. In the McKiernan study, the algorithm was developed for the first time in 255 patients and then validated in the extended screening group of 519 patients, representing only 48% of the validation cohort after multiple exclusions. The majority of exclusions were for urine volume >49 mL, assay failure, and application outside the intended use population.

Based on reasons discussed above (see *Additional Biomarker Tests*), the panel considers EPI to be investigational at the present time, but will review additional information as it becomes available.

Mi-Prostate Score

The Mi-Prostate Score (MiPS) assay measures total serum PSA and post-DRE urine expression of *PCA3* and the *TMPRSS2:ERG* fusion gene.²³³ Rearrangements of the *ERG* gene are found in approximately half of prostate cancers. ²³⁴ The *TMPRSS2:ERG* fusion specifically occurs at high frequency and appears to be an early event in prostate cancer development.²³⁵ The role of PCA3 in prostate cancer is

NCCN Guidelines Index
Table of Contents
Discussion

discussed above. Early studies suggested that the combination of these 2 markers improved the prediction of prostate cancer on biopsy.²³⁶

A MiPS validation study included 1244 men with planned biopsy (80% with no prior prostate biopsy) in a validation cohort.²³³ The AUC for the prediction of any cancer was 0.751 for MiPS, compared with 0.585 for PSA alone. For the prediction of Gleason score ≥7 cancer, the AUCs for MiPS and PSA alone were 0.772 and 0.651, respectively.

A multicenter prospective validation study of this assay included 516 participants in a development cohort and 561 participants in a validation cohort. ²³⁷ In the validation cohort, use of the test improved specificity for the presence of cancer with Gleason score ≥7 from 17% to 33%, with the sensitivity at 93%. The authors calculate that 42% of unnecessary biopsies could have been avoided by using the assay in biopsy decisions.

Based on reasons discussed above (see *Additional Biomarker Tests*), the panel considers MiPS to be investigational at the present time, but will review additional information as it becomes available.

SelectMDx

SelectMDx is a gene expression assay performed on post-DRE urine that measures *DLX1* and *HOXC6* expression against *KLK3* as internal reference. *DLX1* and *HOXC6* have been associated with prostate cancer aggressiveness. ^{238,239} As with other assays, SelectMDx is designed to improve the identification of men with clinically significant prostate cancer prior to biopsy, thereby reducing the number of unnecessary biopsies.

The assay was developed on an initial training set of 519 patients from 2 prospective multicenter studies and was then validated in a separate set of 386 patients from these trials.²⁴⁰ Using the expression of *DLX1*

and *HOXC6* alone resulted in an AUC of 0.76, a sensitivity of 91%, a specificity of 36%, an NPV of 94%, and a PPV of 27% for the prediction of Gleason score ≥7 prostate cancer. When the gene expression was combined with PSA levels, PSAD, DRE results, previous negative prostate biopsies, age, and family history in a multimodal model, the overall AUC was 0.90 in the training set and 0.86 (95% CI, 0.80–0.92) in the validation set.

Based on reasons discussed above (see *Additional Biomarker Tests*), the panel considers SelectMDx to be investigational at the present time, but will review additional information as it becomes available.

Biopsy Technique Initial Biopsy

Systematic prostate biopsy under TRUS guidance is the recommended technique for prostate biopsy. Initially described as a sextant technique sampling both right and left sides from the apex, mid-gland, and base in the mid-parasagittal plane, more recently extended biopsy schemes have demonstrated improved cancer detection rates. Although no one scheme is considered optimal for all prostate shapes and sizes, most emphasize better sampling of the lateral and anterior aspects of the peripheral zone. One commonly used scheme is the 12-core biopsy scheme that includes a standard sextant as well as a lateral sextant scheme (ie, lateral apex, lateral mid-gland, lateral base). This scheme has been validated and results in enhanced cancer detection compared to sextant biopsy schemes.^{241,242}

The panel recommends an extended-pattern, at least 12-core biopsy be done (sextant medial and lateral peripheral zone and lesion-directed). Anteriorly directed biopsy is not supported in routine biopsy. However,

NCCN Guidelines Index
Table of Contents
Discussion

this can be added to an extended biopsy protocol in a repeat biopsy if PSA is persistently elevated.

Interest in the use of novel imaging, particularly MRI, to guide needle placement during biopsy (see *Imaging*, above, and *Targeted Biopsy Techniques for Repeat Biopsy*, below) has increased recently.²⁴³ In addition, there is interest in saturation approaches to biopsy (often image-guided) to improve diagnostic accuracy (see *Saturation Biopsy Techniques*, below).²⁴⁴ Another advanced prostate biopsy technique is transperineal template biopsy, which systematically samples anterior, mid, posterior, and basal zones for approximately 24 to 32 cores.²⁴⁵

At present, the panel does not recommend routine use of advanced biopsy techniques or specific imaging other than TRUS for initial biopsy, although they can be considered in the repeat biopsy setting as discussed below.

Targeted Biopsy Techniques for Initial Biopsy

Targeted biopsy techniques include cognitive or visual targeting (guiding with US, based on an MRI image), TRUS-MRI fusion platforms (merging a stored MRI image with a real-time US image), and direct inbore magnetic resonance (MR)-guided biopsy (performed by an interventional radiologist while the patient is in the scanner). 243,246,247 Emerging data suggest that multiparametric MRI followed by lesion targeting may increase the detection of clinically significant, higher-risk (Gleason \geq 4+3) disease while lowering the detection of lower-risk (Gleason 6 or lower-volume 3+4) disease.

In a prospective study of 223 biopsy-naïve men with elevated PSA, all men had standard TRUS biopsies in addition to multiparametric MRI. ¹⁵⁸ Participants with suspicious or equivocal lesions (PI-RADS ≥3) then underwent MRI-guided biopsy. TRUS biopsies detected 126 of 142

cases of cancer (88.7%), including 47 cases classified as low risk. The MRI-guided biopsies identified an additional 16 cases of intermediate/high-risk prostate cancer and led to the reclassification of 13 cases from low risk to intermediate/high risk. Thus, the addition of multiparametric MRI with targeted biopsies for suspicious or equivocal lesions to standard biopsy allowed the identification of clinically significant disease in an additional 13% of the study population.

A single-center trial randomized 130 biopsy-naïve men to a control group that received TRUS-guided random biopsy alone or to a group that received prebiopsy multiparametric MRI, TRUS-guided random biopsy, and cognitive MRI/TRUS fusion targeted biopsy. Similar rates of detection of prostate cancer (64% vs. 57%; P = .5) and of clinically significant cancer (55% vs. 45%; P = .8) were seen in the two arms. In another randomized trial, 212 biopsy-naïve patients with suspected prostate cancer were assigned to a pre-biopsy multiparametric MRI group or a standard biopsy group. Participants in the multiparametric MRI group had targeted fusion biopsies if suspicious lesions were seen. Otherwise, they received standard biopsies. More clinically significant prostate cancers were detected in the multiparametric MRI arm (43.9% vs. 18.1%; P < .001).

In another single-center study, 452 men with no prior biopsy and suspicious regions on multiparametric MRI underwent both systematic biopsy and fusion-targeted biopsy. Systematic biopsies identified more cancer (49.2% vs. 43.5%; P = .006) but 82.9% of the 41 cancers detected by systematic biopsy and not by targeted biopsy were Gleason 6. Furthermore, targeted biopsies identified more Gleason 7+ disease (88.6% vs. 77.3%; P = .037). Another similar study showed similar results. Similar 1500

NCCN Guidelines Index
Table of Contents
Discussion

In a large single-institution prospective cohort study, 1003 men with elevated PSA or abnormal DRE and lesions visible on multiparametric MRI underwent both MRI/US fusion-targeted and standard biopsy. 163 In this study, 196 men had no prior biopsy, and results appear to be similar in the biopsy-naïve subgroup compared with the entire cohort. Of the full cohort, 170 men had pathology results available following radical prostatectomy: 8 men (4.7%) had intermediate- or high-risk cancers that would have been missed based on targeted biopsy results of no or lowrisk cancer and 44 men (26%) had intermediate- or high-risk cancers that would have been missed based on standard biopsy results of no or low-risk cancer. The sensitivities for detection of intermediate- or highgrade cancer of targeted and standard biopsies were 77% and 53%, respectively, whereas the specificities of the 2 approaches were similar at 68% and 66%, respectively. Combining both biopsy techniques increased sensitivity to 85% but decreased specificity to 49%. The effect of targeted biopsies on clinical outcomes is still unknown.

As noted earlier, the results of the PROMIS trial published recently showed that the use of MRI and MR targeting in those with an elevated PSA resulted in improved detection rates of clinically significant cancer compared to TRUS-guided biopsy and its use could decrease biopsy rates.¹⁶⁴

Overall, the panel believes that the data for the use of MRI and MRItargeted biopsies in the initial biopsy setting are insufficient, as yet, to recommend them over standard, US-guided biopsies in this setting at this time. This recommendation could change if such methods are validated in ongoing clinical trials and in population-based settings. MRI and MRI-targeted biopsies can be considered in the setting of repeat biopsy, as discussed below.

Repeat Biopsies

A negative biopsy does not preclude a diagnosis of prostate cancer on subsequent biopsy. If clinical suspicion of cancer persists after a negative biopsy, consideration can be given to saturation biopsy strategies and/or the use of multiparametric MRI followed by an appropriate targeted biopsy technique based on the results. In addition, biomarker testing can also be considered in these men to inform decisions regarding repeat biopsy (see *Biomarker Testing: PSA Derivatives and Other Tests*, above).

Targeted Biopsy Techniques for Repeat Biopsy

After 1 or more negative TRUS biopsies, men who are considered at high risk (eg, those with persistently elevated or rising PSA) can be considered for MRI followed by targeted biopsy based on several studies showing improved detection of clinically significant prostate cancer in this setting. ^{156,251-257} Reported cancer detection rates by targeted fusion biopsies in men with previous negative biopsies range from 34% to 51%. ^{156,252-254} Studies that used direct MR guidance for targeted biopsies report similar cancer detection rates in men with previous negative biopsies: 41% to 56%. ²⁵⁵⁻²⁵⁷

The targeted biopsy approach may lead to a higher rate of detection of clinically significant cancer in men with prior negative biopsy than repeat systematic biopsies, which lead to the identification of more low-risk tumors. For instance, in one retrospective cohort study, 105 men with prior negative biopsies and elevated PSA underwent multiparametric MRI followed by standard 12-core systematic biopsy and MR-US fusion-targeted biopsy regardless of MRI results.²⁵³ Prostate cancer was found in 36 men (34%). In this study, 21 of 23 cancers (91%) identified by targeted biopsy were significant (Gleason 3 + 4 or mean core length ≥4 mm), compared with 15 of 28 cancers (54%) identified by standard

NCCN Guidelines Index
Table of Contents
Discussion

biopsy. Targeted biopsies missed 2 cases of clinically significant cancer compared with 5 missed cases with standard biopsies.

Another prospective study included 347 patients with findings suspicious for prostate cancer, many of whom had 1 or more previous negative biopsies. ¹⁵⁶ All patients received a multiparametric MRI, and those with abnormal findings proceeded to MRI-TRUS fusion-targeted biopsies. The outcome was defined as improved detection in targeted cores, with significantly more cancer detected in targeted cores than in systematic biopsies (30% vs. 8.2%). About 12% of men without MRI-suspicious lesions were diagnosed with intermediate-risk tumors. In this study, the cancer detection rate was 51% in men with previous negative biopsies.

In a prospective study, 583 patients (56% with prior negative biopsy) underwent multiparametric MRI. 258 All men received systematic 12-core biopsies, and men with lesions seen on MRI also received fusion-guided biopsies. Multivariate analysis revealed that a higher MRI suspicious score increased the likelihood of finding Gleason 7+ cancer by 3.3-fold (95% CI, 2.2–5.1; P < .0001).

A recent meta-analysis of 16 studies (1926 men) also showed that MRI-targeted biopsy improved detection of clinically significant prostate cancer in men with previous negative biopsies over standard TRUS biopsy. Overall, the panel believes that targeted biopsy techniques may help identify regions of cancer missed on prior biopsies and should be considered in selected cases after at least 1 negative biopsy. They can be considered before or after biomarker tests (discussed above) to aid in patient/clinician discussions.

Saturation Biopsy Techniques

In saturation biopsies, cores are collected systematically every few millimeters across the entire prostate to improve prostate cancer detection over that of a standard 12-core biopsy. Saturation biopsies can be performed via transrectal or transperineal approaches, the latter of which is often image-guided (see Targeted Biopsy Techniques for Repeat Biopsy, above). The approaches seem to have similar rates of cancer detection.²⁶⁰ In fact, one study compared the approaches headto-head and found similar cancer detection rates in the repeat biopsy setting (31.4% for transpectal vs. 25.7% for transperineal; P = .3). ²⁶¹ The transperineal approach may have a lower risk of infection, may allow for better saturation of the gland, and may be more acceptable to patients compared with the transrectal approach.²⁶² In fact, recent studies reported zero or near-zero rates of sepsis in men biopsied with the transperineal approach. 263-265 Another possible benefit of the transperineal over the transrectal approach is more accurate staging.²⁶⁶ However, the transperineal approach may be associated with a higher rate of urinary retention.²⁶² The transrectal approach can be performed in the office.

A study of transperineal template-guided mapping biopsy found detection rates of 55.5%, 41.7%, and 34.4% for men with 1, 2, and \geq 3 previous negative biopsies, respectively.²⁶⁷ Other groups have reported similar rates of detection using saturation biopsies in men with previous negative biopsies.^{265,268,269}

Compared with an extended biopsy approach (12–14 cores), one prospective, non-randomized study found that transrectal saturation biopsy detected significantly more cancers in men with 1 previous negative biopsy (32.7% vs. 24.9%; P = .0075). The detection of insignificant cancer did not differ significantly between the groups (40.1% vs. 32.6%; P = .2).

NCCN Guidelines Index
Table of Contents
Discussion

Based on this emerging evidence, the panel believes that a saturation biopsy strategy can be considered for very high-risk men with previous negative biopsies. However, as noted, alternative strategies using MRI or biomarkers (discussed above) may avoid the use of biopsy altogether.

Risks of Biopsy

The problem of repeated biopsies is gaining attention in the PSA debate, due to increasing concerns about the risks of complications, particularly drug-resistant *Escherichia coli* infections.²⁷¹ The range of potential infectious complications includes urinary tract infection (UTI), epididymitis, orchitis, prostatitis, and sepsis. Other morbidities include rectal bleeding, hematuria, vasovagal episodes, fever, hematospermia, and dysuria.^{272,273}

In an analysis of 17,472 men in the SEER database, prostate biopsy was associated with a 2.7-fold increased risk of 30-day hospitalization. These investigators also reported that while the incidence of infectious complications following prostate biopsy has increased significantly in recent years, the incidence of noninfectious complications has remained relatively stable. These results are similar to those from a Canadian study of 75,190 men who were biopsied, in which the hospitalization rate increased from 1.0% in 1996 to 4.1% in 2005. About 70% of all admissions were related to infections. A recent analysis of the PLCO trial, however, observed that biopsy complications were infrequent and that biopsy was not associated with a higher risk of mortality.

Fluoroquinolones, particularly ciprofloxacin, are used commonly as a prophylaxis for TRUS biopsy. Recent studies have reported that about half of post-biopsy infections are resistant to fluoroquinolone, many of which are also resistant to other antibiotics.^{277,278} Resistance is

associated with prior prophylactic exposure to fluoroquinolone. There are additional risks associated with the use of fluoroquinolones, as indicated in the Boxed Warning on the FDA label for these drugs: "these medicines are associated with disabling and potentially permanent side effects of the tendons, muscles, joints, nerves, and central nervous system that can occur together in the same patient." Although these infections will respond to cephalosporins, measures are needed to prevent additional resistant strains. One strategy is to develop more stringent criteria for biopsy. Other proposed strategies include transperineal prostate biopsy, selectively targeted antibiotic prophylaxis with pre-biopsy rectal culture, and selectively augmented prophylaxis with two antibiotics in higher risk patients. 282

Up to 90% of men undergoing a prostate biopsy have reported some discomfort during the procedure. Both topical lidocaine gel and an injectable nerve block have been shown to be safe and efficacious for reducing discomfort. Topical lidocaine was more efficacious in reducing pain during probe insertion, whereas peri-prostatic injection reduced pain during the biopsy itself. Results of one small clinical trial suggest that a combination of lidocaine suppository and periprostatic nerve block might be more effective at reducing pain during prostate biopsy than either one alone. Another small trial found the combination of lidocaine with pelvic plexus block to be most effective at relieving pain associated with prostate biopsy.

These minor anesthetic techniques greatly enhance the acceptability of the procedure, particularly with extended templates and saturation techniques, but should be considered in all patients.²⁸⁸ For exceptional cases such as men with anal strictures or patients who have been inadequately blocked with a periprostatic injection, intravenous sedation or general anesthesia may be advantageous.

NCCN Guidelines Index
Table of Contents
Discussion

NCCN Recommendations

General Considerations

The decision to participate in an early detection program for prostate cancer is complex for both the patient and physician. Important factors must be assessed when considering early detection of prostate cancer including patient age, life expectancy, family history, race, presence of inherited mutations, and previous early detection test results (see *Screening in High-Risk Populations*, above). Most importantly, the patient and physician need to understand the risks and benefits associated with the early detection and treatment of prostate cancer. Several general principles for early detection should be clearly understood before using the NCCN Guidelines:

- No portion of these early detection guidelines is designed to replace an accurate history and complete physical examination conducted by a physician.
- The general health, medical comorbidities, life expectancy, and preferences of the patient are paramount when recommending or designing an early detection program.
- Prostate cancer risk factors, such as family history, presence of inherited mutations, and race (ie, African-American men) should be considered before decisions are made concerning the initiation of an early detection program (see Screening in High-Risk Populations, above).
- Prostate cancer in its early stages has no identifiable symptoms.
 In advanced disease, symptoms may include urinary obstruction, prostatic bleeding, hematospermia, and bone pain.
 Although most men wishing to take part in early detection programs have no symptoms of prostate cancer, they may have

mild to severe symptoms of lower urinary tract disease because of benign prostatic enlargement. Care should be taken to educate patients about the distinction between these two diseases when discussing the risks and benefits associated with early detection.

- A patient's history of prior testing, including DRE, PSA, PSA derivatives, and prostate biopsy, should be assessed when considering early detection.
- A thorough discussion on the pros and cons of testing must be carried out between the physician and the potential participant as outlined in the algorithm. Patients should be informed that the purpose of screening is to find aggressive cancers, that screening often detects low-risk cancers, and that such low-risk cancers may not need treatment but can be managed by active surveillance. Decision aids are available.^{289,290}
- The panel uniformly feels that these guidelines need to be linked to the NCCN Guidelines for Prostate Cancer (available at www.NCCN.org).
- The panel recommends that baseline PSA testing should be offered to healthy, well-informed men aged 45 to 75 years based on the results of RCTs. Baseline testing may be complemented by DRE. An elevated PSA should be confirmed by repeat testing.
- The panel recommends frequency of testing be 2 to 4 years for men aged 45 to 75 years with serum PSA values below 1 ng/mL. For men with PSA of 1 to 3 ng/mL, testing should occur at 1- to 2-year intervals.

NCCN Guidelines Index
Table of Contents
Discussion

- The panel recommends that biopsy should be considered in those aged 45 to 75 years with a serum PSA >3.0 ng/mL. However, the majority of panel members agree that a decision to perform a biopsy should not be based on a PSA cut-point alone, but should incorporate other important clinical variables including age, family history, PSA kinetics, race, health status, and patient preference.
- The panel recommends that PSA testing be considered only in very select patients after the age of 75 years (category 2B) and that indication for biopsy be carefully evaluated. Panel members uniformly discourage PSA testing in men unlikely to benefit from prostate cancer diagnosis based on age and/or comorbidity.
- The panel recommends that consideration may be given to biomarkers that improve biopsy specificity such as %f PSA, 4Kscore, and PHI before biopsy in men with serum PSA levels of >3 ng/mL who desire more specificity. These tests and PCA3 are also options in men being considered for repeat biopsy after an initially benign result. MRI may be of similar value in both situations.

Interpretation of Biopsy Results

Cancer

Patients diagnosed with prostate cancer by biopsy should be managed according to the NCCN Guidelines for Prostate Cancer (available at www.NCCN.org). Among men diagnosed with cancer on prostate biopsy, the panel does not recommend routine repeat biopsy, except in special circumstances, such as the suspicion that the patient harbors more aggressive cancer than was evident on the initial biopsy and the patient is otherwise a candidate for active surveillance as outlined in the treatment guidelines.

High-Grade Prostatic Intraepithelial Neoplasia

Approximately 10% of patients undergoing biopsy will be found to have high-grade prostatic intraepithelial neoplasia (HGPIN).²⁹¹ Cytologically, the nuclear features of HGPIN resemble that of malignant tumors; however, the presence of a basal layer on the acini distinguishes this entity from cancer.

Extended biopsy schemes have resulted in a dramatic decline in the prevalence of cancer detected from a repeat biopsy in patients with HGPIN detected from the initial biopsy. While reports in the sextant biopsy era demonstrated cancer rates of approximately 50%, contemporary series using extended biopsy schemes report rates of approximately 10% to 20% and occasionally higher. ²⁹²⁻²⁹⁴

Interestingly, the rates of cancer with repeat biopsy in such patients seems to be a little different than those who undergo repeat biopsy based on other risk factors, such as age, family history, and PSA. In addition, most detected cancers are low grade.²⁹⁵ If extended biopsies were used initially, only those at high risk for more aggressive cancer should undergo repeat biopsy.²⁹⁶ It is recommended that those with *multifocal* HGPIN be followed as men with atypia suspicious for cancer (see below).²⁹⁷ Men with *focal* HGPIN should be followed as men with benign results (see below).

Atypia, Suspicious For Cancer

Distinct from HGPIN in which a basal cell layer is present, atypia is characterized by small single-cell layer acini. Unlike HGPIN, which is a distinct pathologic diagnosis, atypia represents one of two possibilities: normal prostate tissue distorted by artifact or prostate cancer that does not meet the histologic criteria for a diagnosis of prostate cancer. Because so few glands are present on the biopsy specimen, an unequivocal diagnosis of cancer cannot be established.

NCCN Guidelines Index Table of Contents Discussion

Even in the era of extended biopsy schemes, the prevalence of cancer detected from a repeat biopsy in patients with atypia detected from the initial biopsy is guite high: 50% or more, with the most likely area of cancer detection residing in the prostate area demonstrating atypia from the initial biopsy. 298,299

Therefore, the panel recommends that a repeat biopsy with relative increased sampling of the atypical site be considered in these patients. The use of serum or urine biomarker tests or multiparametric MRI can also be considered in these patients, although it is not known whether these patients receive as much (or more) benefit from these approaches as patients with a completely negative biopsy.

Benign Results

If a biopsy returns as negative for cancer, the panel recommends repeat PSA and DRE at 6- to 24-month intervals with consideration of repeat biopsy based on results. The 20-year cumulative risk of prostate cancer-specific mortality in patients with initial benign biopsy results is low and increases with PSA levels (0.7% for PSA ≤10 ng/mL; 3.6% for PSA >10 to ≤20 ng/mL; and 17.6% for PSA >20 ng/mL).³⁰⁰ The following tests can be considered in patients thought to be at a higher risk despite a negative biopsy to inform the decision about performing a repeat biopsy: %f PSA, 4Kscore, PHI, PCA3, or ConfirmMDx. As discussed in detail above, multiparametric MRI and targeted biopsies or other refined biopsy techniques may also be considered in the evaluation of such patients.

Summary

Since the early 1990s, many variants of the tPSA assay have been introduced in attempts to increase the sensitivity of screening programs or cancer detection while maintaining specificity (elimination of unnecessary biopsies). These NCCN Guidelines recommend a method

by which individuals and their physicians can use these new techniques rationally for the early detection of prostate cancer. These guidelines are not designed to provide an argument for the use of population screening programs for prostate cancer. Rather, they are meant to provide a vehicle by which early detection efforts can be practiced in an evidence-based, systematic fashion in patients who choose to participate in such programs. Whether to treat a patient upon diagnosis is beyond the scope of these guidelines (see the NCCN Guidelines for Prostate Cancer at www.NCCN.org).

These NCCN Guidelines for Prostate Cancer Early Detection will incorporate many recently validated findings if and when they occur. The panel will re-examine the clinical utility of new modalities annually, and the guidelines will be modified accordingly. In addition, future iterations of these guidelines may incorporate new serum markers currently undergoing clinical investigation.

The goal of NCCN and this Guidelines Panel in updating these algorithms is to assist men and clinicians in choosing a program of early detection for prostate cancer and in making decisions regarding the need for prostate biopsy. Any clinician who uses these guidelines is expected to exercise independent medical judgment in the context of the individual clinical circumstances to determine the patient's need for prostate biopsy. These guidelines will continue to evolve as the field of prostate cancer advances.

NCCN Guidelines Index
Table of Contents
Discussion

References

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017;67:7-30. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28055103.
- 2. Lifetime Risk of Developing or Dying From Cancer. American Cancer Society; Available at: https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html. Accessed August 11, 2017.
- 3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65:5-29. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25559415.
- 4. U.S. National Library of Medicine-Key MEDLINE® Indicators. Available at: http://www.nlm.nih.gov/bsd/bsd_key.html. Accessed August 11, 2017.
- 5. Lavallee LT, Binette A, Witiuk K, et al. Reducing the harm of prostate cancer screening: repeated prostate-specific antigen testing. Mayo Clin Proc 2016;91:17-22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26688045.
- 6. Catalona WJ, Partin AW, Slawin KM, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 1998;279:1542-1547. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9605898.
- 7. Thompson IM, Ankerst DP, Chi C, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 2005;294:66-70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15998892.
- 8. Eggener SE, Large MC, Gerber GS, et al. Empiric antibiotics for an elevated prostate-specific antigen (PSA) level: a randomised, prospective, controlled multi-institutional trial. BJU international

2013;112:925-929. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23890317.

9. D'Amico AV, Roehrborn CG. Effect of 1 mg/day finasteride on concentrations of serum prostate-specific antigen in men with androgenic alopecia: a randomised controlled trial. Lancet Oncol 2007;8:21-25. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17196507.

- 10. Brawer MK, Lin DW, Williford WO, et al. Effect of finasteride and/or terazosin on serum PSA: results of VA Cooperative Study #359. Prostate 1999;39:234-239. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10344212.
- 11. Andriole GL, Bostwick DG, Brawley OW, et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med 2010;362:1192-1202. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20357281.
- 12. Roehrborn CG, Andriole GL, Wilson TH, et al. Effect of dutasteride on prostate biopsy rates and the diagnosis of prostate cancer in men with lower urinary tract symptoms and enlarged prostates in the Combination of Avodart and Tamsulosin trial. Eur Urol 2011;59:244-249. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21093145.
- 13. Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med 2003;349:215-224. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12824459.
- 14. Thompson IM, Jr., Goodman PJ, Tangen CM, et al. Long-term survival of participants in the prostate cancer prevention trial. The New England journal of medicine 2013;369:603-610. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23944298.
- 15. Pinsky PF, Black A, Grubb R, et al. Projecting prostate cancer mortality in the PCPT and REDUCE chemoprevention trials. Cancer 2013;119:593-601. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/22893105.

NCCN Guidelines Index
Table of Contents
Discussion

16. Small EJ, Halabi S, Dawson NA, et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 2004;22:1025-1033. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15020604.

- 17. Barqawi A, Gamito E, O'Donnell C, Crawford ED. Herbal and vitamin supplement use in a prostate cancer screening population. Urology 2004;63:288-292. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14972473.
- 18. Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst 2009;101:374-383. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19276453.
- 19. Aus G, Bergdahl S, Lodding P, et al. Prostate cancer screening decreases the absolute risk of being diagnosed with advanced prostate cancer--results from a prospective, population-based randomized controlled trial. Eur Urol 2007;51:659-664. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16934392.
- 20. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med 2004;350:2239-2246. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15163773.
- 21. Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 1991;324:1156-1161. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1707140.
- 22. Carlsson S, Leapman M, Carroll P, et al. Who and when should we screen for prostate cancer? Interviews with key opinion leaders. BMC Med 2015;13:288. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26612204.

23. McDonald ML, Parsons JK. The case for tailored prostate cancer screening: an NCCN perspective. J Natl Compr Canc Netw 2015;13:1576-1583. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/26656524.

- 24. Wilt TJ, Dahm P. PSA screening for prostate cancer: why saying no is a high-value health care choice. J Natl Compr Canc Netw 2015;13:1566-1574. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/26656523.
- 25. Penson DF, Resnick MJ. Let's not throw the baby out with the bathwater in prostate cancer screening. J Clin Oncol 2016;34:3489-3491. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27432920.
- 26. Pinsky PF, Prorok PC, Kramer BS. Prostate cancer screening a perspective on the current state of the evidence. N Engl J Med 2017;376:1285-1289. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28355509.
- 27. Shoag JE, Schlegel PN, Hu JC. Prostate-specific antigen screening: time to change the dominant forces on the pendulum. J Clin Oncol 2016;34:3499-3501. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27432925.
- 28. Clegg LX, Li FP, Hankey BF, et al. Cancer survival among US whites and minorities: a SEER (Surveillance, Epidemiology, and End Results) Program population-based study. Arch Intern Med 2002;162:1985-1993. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12230422.
- 29. Paquette EL, Sun L, Paquette LR, et al. Improved prostate cancer-specific survival and other disease parameters: impact of prostate-specific antigen testing. Urology 2002;60:756-759. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12429290.
- 30. Etzioni R, Gulati R, Tsodikov A, et al. The prostate cancer conundrum revisited: treatment changes and prostate cancer mortality

NCCN Guidelines Index
Table of Contents
Discussion

declines. Cancer 2012;118:5955-5963. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22605665.

- 31. Chou R, LeFevre ML. Prostate cancer screening--the evidence, the recommendations, and the clinical implications. JAMA 2011;306:2721-2722. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22203543.
- 32. Cooperberg MR, Carroll PR. Trends in management for patients with localized prostate cancer, 1990-2013. JAMA 2015;314:80-82. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26151271.
- 33. Moyer VA. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Annals of internal medicine 2012;157:120-134. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22801674.
- 34. Barocas DA, Mallin K, Graves AJ, et al. Effect of the USPSTF grade D recommendation against screening for prostate cancer on incident prostate cancer diagnoses in the United States. J Urol 2015;194:1587-1593. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26087383.
- 35. Drazer MW, Huo D, Eggener SE. National prostate cancer screening rates after the 2012 US Preventive Services Task Force recommendation discouraging prostate-specific antigen-based screening. J Clin Oncol 2015;33:2416-2423. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26056181.
- 36. Etzioni R, Gulati R. Recent trends in PSA testing and prostate cancer incidence: a look at context. JAMA Oncol 2016. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27010657.
- 37. Fedewa SA, Ward EM, Brawley O, Jemal A. Recent patterns of prostate-specific antigen testing for prostate cancer screening in the United States. JAMA Intern Med 2017;177:1040-1042. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28437537.
- 38. Halpern JA, Shoag JE, Artis AS, et al. National trends in prostate biopsy and radical prostatectomy volumes following the US Preventive

Services Task Force guidelines against prostate-specific antigen screening. JAMA Surg 2017;152:192-198. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27806151.

- 39. Jemal A, Fedewa SA, Ma J, et al. Prostate cancer incidence and PSA testing patterns in relation to USPSTF screening recommendations. JAMA 2015;314:2054-2061. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26575061.
- 40. Maurice MJ, Kim SP, Abouassaly R. Current status of prostate cancer diagnosis and management in the United States. JAMA Oncol 2016;2:1505-1507. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27356204.
- 41. Sammon JD, Abdollah F, Choueiri TK, et al. Prostate-specific antigen screening after 2012 US Preventive Services Task Force recommendations. JAMA 2015;314:2077-2079. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26575066.
- 42. Zavaski ME, Meyer CP, Sammon JD, et al. Differences in prostatespecific antigen testing among urologists and primary care physicians following the 2012 USPSTF recommendations. JAMA Intern Med 2016;176:546-547. Available at:
- 43. Weiner AB, Matulewicz RS, Eggener SE, Schaeffer EM. Increasing incidence of metastatic prostate cancer in the United States (2004-2013). Prostate Cancer Prostatic Dis 2016;19:395-397. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27431496.
- 44. Hu JC, Nguyen P, Mao J, et al. Increase in prostate cancer distant metastases at diagnosis in the United States. JAMA Oncol 2017;3:705-707. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28033446.
- 45. Draft Recommendation Statement. Prostate Cancer: Screening. The US Preventive Services Task Force (USPSTF); 2017. Available at: https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementDraft/prostate-cancer-screening1. Accessed August 11, 2017.

NCCN Guidelines Index
Table of Contents
Discussion

- 46. Catalona WJ, Richie JP, Ahmann FR, et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 1994;151:1283-1290. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7512659.
- 47. Catalona WJ, Smith DS, Ratliff TL, Basler JW. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA 1993;270:948-954. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7688438.
- 48. Brawley OW. Trends in prostate cancer in the United States. J Natl Cancer Inst Monogr 2012;2012:152-156. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23271766.
- 49. Andriole GL, Crawford ED, Grubb RL, 3rd, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 2009;360:1310-1319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19297565.
- 50. Hugosson J, Carlsson S, Aus G, et al. Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 2010;11:725-732. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20598634.
- 51. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009;360:1320-1328. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19297566.
- 52. Gosselaar C, Roobol MJ, Roemeling S, Schroder FH. The role of the digital rectal examination in subsequent screening visits in the European randomized study of screening for prostate cancer (ERSPC), Rotterdam. European urology 2008;54:581-588. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18423977.
- 53. Thompson IM, Ankerst DP, Chi C, et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer

Inst 2006;98:529-534. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16622122.

- 54. Halpern JA, Shoag JE, Mittal S, et al. Prognostic significance of digital rectal examination and prostate specific antigen in the prostate, lung, colorectal and ovarian (PLCO) cancer screening arm. J Urol 2017;197:363-368. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27569432.
- 55. Catalona WJ, Richie JP, Ahmann FR, et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 2017;197:S200-S207. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28012755.
- 56. Flanigan RC, Catalona WJ, Richie JP, et al. Accuracy of digital rectal examination and transrectal ultrasonography in localizing prostate cancer. J Urol 1994;152:1506-1509. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7523707.
- 57. Schroder FH, van der Maas P, Beemsterboer P, et al. Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst 1998;90:1817-1823. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9839522.
- 58. Hattangadi JA, Chen MH, D'Amico AV. Early detection of high-grade prostate cancer using digital rectal examination (DRE) in men with a prostate-specific antigen level of <2.5 ng/mL and the risk of death. BJU international 2012;110:1636-1641. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22757982.
- 59. Schroder FH, Hugosson J, Roobol MJ, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 2012;366:981-990. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22417251.

- 60. Heijnsdijk EA, Wever EM, Auvinen A, et al. Quality-of-life effects of prostate-specific antigen screening. N Engl J Med 2012;367:595-605. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22894572.
- 61. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet 2014;384:2027-2035. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25108889.
- 62. Buzzoni C, Auvinen A, Roobol MJ, et al. Metastatic prostate cancer incidence and prostate-specific antigen testing: new insights from the European Randomized Study of Screening for Prostate Cancer. Eur Urol 2015. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25791513.
- 63. Roobol MJ, Kranse R, Bangma CH, et al. Screening for prostate cancer: results of the Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. European urology 2013;64:530-539. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23759326.
- 64. Bokhorst LP, Bangma CH, van Leenders GJ, et al. Prostate-specific antigen-based prostate cancer screening: reduction of prostate cancer mortality after correction for nonattendance and contamination in the Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. Eur Urol 2014;65:329-336. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23954085.
- 65. Kilpelainen TP, Tammela TL, Malila N, et al. Prostate cancer mortality in the Finnish randomized screening trial. J Natl Cancer Inst 2013;105:719-725. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23479454.
- 66. Arnsrud Godtman R, Holmberg E, Lilja H, et al. Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Goteborg randomized population-based prostate cancer screening trial. Eur Urol 2015;68:354-360. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25556937.

- 67. Grenabo Bergdahl A, Holmberg E, Moss S, Hugosson J. Incidence of prostate cancer after termination of screening in a population-based randomised screening trial. European urology 2013;64:703-709. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23721957.
- 68. Andriole GL, Crawford ED, Grubb RL, 3rd, et al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J Natl Cancer Inst 2012;104:125-132. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22228146.
- 69. Pinsky PF, Prorok PC, Yu K, et al. Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer 2017;123:592-599. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27911486.
- 70. Pinsky PF, Blacka A, Kramer BS, et al. Assessing contamination and compliance in the prostate component of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Clin Trials 2010;7:303-311. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20571134.
- 71. Shoag JE, Mittal S, Hu JC. Reevaluating PSA testing rates in the PLCO trial. N Engl J Med 2016;374:1795-1796. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27144870.
- 72. Andriole GL. Update of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Recent Results Cancer Res 2014;202:53-57. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24531777.
- 73. Crawford ED, Grubb R, 3rd, Black A, et al. Comorbidity and mortality results from a randomized prostate cancer screening trial. J Clin Oncol 2011;29:355-361. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21041707.
- 74. Bach PB, Vickers AJ. Do the data support the comorbidity hypothesis for the Prostate, Lung, Colorectal, and Ovarian Cancer

NCCN Guidelines Index
Table of Contents
Discussion

Screening Trial results? Journal of Clinical Oncology 2011;29:e387. Available at: http://jco.ascopubs.org/content/29/13/e387.short.

- 75. Carlsson S, Assel M, Ulmert D, et al. Screening for prostate cancer starting at age 50-54 years. A population-based cohort study. Eur Urol 2016. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27084245.
- 76. Carlsson S, Assel M, Ulmert D, et al. Screening for prostate cancer starting at age 50-54 years. A population-based cohort study. Eur Urol 2017;71:46-52. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/27084245.

- 77. Howard K, Barratt A, Mann GJ, Patel MI. A model of prostate-specific antigen screening outcomes for low- to high-risk men: information to support informed choices. Archives of internal medicine 2009;169:1603-1610. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19786680.
- 78. Lilja H, Cronin AM, Dahlin A, et al. Prediction of significant prostate cancer diagnosed 20 to 30 years later with a single measure of prostate-specific antigen at or before age 50. Cancer 2011;117:1210-1219. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20960520.
- 79. Vickers AJ, Ulmert D, Sjoberg DD, et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study. BMJ 2013;346:f2023. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23596126.

- 80. Preston MA, Batista JL, Wilson KM, et al. Baseline prostate-specific antigen levels in midlife predict lethal prostate cancer. J Clin Oncol 2016;34:2705-2711. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27298404.
- 81. Capitanio U, Perrotte P, Zini L, et al. Population-based analysis of normal Total PSA and percentage of free/Total PSA values: results from screening cohort. Urology 2009;73:1323-1327. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19376563.

- 82. Chun FK, Hutterer GC, Perrotte P, et al. Distribution of prostate specific antigen (PSA) and percentage free PSA in a contemporary screening cohort with no evidence of prostate cancer. BJU Int 2007;100:37-41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17488305.
- 83. Ulmert D, Cronin AM, Bjork T, et al. Prostate-specific antigen at or before age 50 as a predictor of advanced prostate cancer diagnosed up to 25 years later: a case-control study. BMC Med 2008;6:6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18279502.
- 84. van Leeuwen PJ, Roobol MJ, Kranse R, et al. Towards an optimal interval for prostate cancer screening. Eur Urol 2012;61:171-176. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21840117.
- 85. Gulati R, Gore JL, Etzioni R. Comparative effectiveness of alternative prostate-specific antigen--based prostate cancer screening strategies: model estimates of potential benefits and harms. Ann Intern Med 2013;158:145-153. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23381039.
- 86. Roobol MJ, Roobol DW, Schroder FH. Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). Urology 2005;65:343-346. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15708050.
- 87. Vickers AJ, Cronin AM, Bjork T, et al. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: case-control study. BMJ 2010;341:c4521. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20843935.
- 88. Social Security Administration. Period Life Table. 2014. Available at: https://www.ssa.gov/OACT/STATS/table4c6.html. Accessed August 11, 2017.

- 89. Howard DH. Life expectancy and the value of early detection. J Health Econ 2005;24:891-906. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16129128.
- 90. Lee SJ, Lindquist K, Segal MR, Covinsky KE. Development and validation of a prognostic index for 4-year mortality in older adults. JAMA 2006;295:801-808. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16478903.
- 91. Daskivich TJ, Chamie K, Kwan L, et al. Overtreatment of men with low-risk prostate cancer and significant comorbidity. Cancer 2011;117:2058-2066. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21523717.
- 92. Daskivich TJ, Chamie K, Kwan L, et al. Comorbidity and competing risks for mortality in men with prostate cancer. Cancer 2011;117:4642-4650. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21480201.
- 93. Sun L, Caire AA, Robertson CN, et al. Men older than 70 years have higher risk prostate cancer and poorer survival in the early and late prostate specific antigen eras. J Urol 2009;182:2242-2248. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19758616.
- 94. Bechis SK, Carroll PR, Cooperberg MR. Impact of age at diagnosis on prostate cancer treatment and survival. J Clin Oncol 2011;29:235-241. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21135285.
- 95. Schaeffer EM, Carter HB, Kettermann A, et al. Prostate specific antigen testing among the elderly--when to stop? J Urol 2009;181:1606-1614; discussion 1613-1604. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19246059.
- 96. SEER Stat Fact Sheets: Prostate Cancer. 2015. Available at: http://seer.cancer.gov/statfacts/html/prost.html. Accessed August 11, 2017.

- 97. Bratt O. Hereditary prostate cancer: clinical aspects. J Urol 2002;168:906-913. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12187189.
- 98. Carter BS, Beaty TH, Steinberg GD, et al. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 1992;89:3367-3371. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1565627.
- 99. Chen YC, Page JH, Chen R, Giovannucci E. Family history of prostate and breast cancer and the risk of prostate cancer in the PSA era. Prostate 2008;68:1582-1591. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18646000.
- 100. Grill S, Fallah M, Leach RJ, et al. Incorporation of detailed family history from the Swedish Family Cancer Database into the PCPT risk calculator. J Urol 2015;193:460-465. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25242395.
- 101. Mahal BA, Chen YW, Muralidhar V, et al. Racial disparities in prostate cancer outcome among prostate-specific antigen screening eligible populations in the United States. Ann Oncol 2017;28:1098-1104. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28453693.
- 102. Randazzo M, Muller A, Carlsson S, et al. A positive family history as a risk factor for prostate cancer in a population-based study with organised prostate-specific antigen screening: results of the Swiss European Randomised Study of Screening for Prostate Cancer (ERSPC, Aarau). BJU Int 2016;117:576-583. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26332304.
- 103. Shenoy D, Packianathan S, Chen AM, Vijayakumar S. Do African-American men need separate prostate cancer screening guidelines? BMC Urol 2016;16:19. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27165293.
- 104. Bratt O, Drevin L, Akre O, et al. Family history and probability of prostate cancer, differentiated by risk category: a nationwide population-

NCCN Guidelines Index
Table of Contents
Discussion

based study. J Natl Cancer Inst 2016;108. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27400876.

105. Plonis J, Nakazawa-Miklasevica M, Malevskis A, et al. Survival rates of familial and sporadic prostate cancer patients. Exp Oncol 2015;37:154-155. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/26112946.

- 106. Raheem OA, Cohen SA, Parsons JK, et al. A family history of lethal prostate cancer and risk of aggressive prostate cancer in patients undergoing radical prostatectomy. Sci Rep 2015;5:10544. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26112134.
- 107. Powell IJ, Bock CH, Ruterbusch JJ, Sakr W. Evidence supports a faster growth rate and/or earlier transformation to clinically significant prostate cancer in black than in white American men, and influences racial progression and mortality disparity. J Urol 2010;183:1792-1796. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20299055.
- 108. Robbins HA, Engels EA, Pfeiffer RM, Shiels MS. Age at cancer diagnosis for blacks compared with whites in the United States. J Natl Cancer Inst 2015;107. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25638255.
- 109. Karami S, Young HA, Henson DE. Earlier age at diagnosis: another dimension in cancer disparity? Cancer Detect Prev 2007;31:29-34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17303347.
- 110. Metcalfe C, Evans S, Ibrahim F, et al. Pathways to diagnosis for Black men and White men found to have prostate cancer: the PROCESS cohort study. Br J Cancer 2008;99:1040-1045. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18797456.
- 111. Sutton SS, Crawford ED, Moul JW, et al. Determining optimal prostate-specific antigen thresholds to identify an increased 4-year risk of prostate cancer development: an analysis within the Veterans Affairs Health Care System. World J Urol 2016. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26753559.

112. Tsodikov A, Gulati R, de Carvalho TM, et al. Is prostate cancer different in black men? Answers from 3 natural history models. Cancer 2017;123:2312-2319. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/28436011.

- 113. Barocas DA, Grubb R, 3rd, Black A, et al. Association between race and follow-up diagnostic care after a positive prostate cancer screening test in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer 2013;119:2223-2229. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23559420.
- 114. Han Y, Rand KA, Hazelett DJ, et al. Prostate cancer susceptibility in men of African ancestry at 8q24. J Natl Cancer Inst 2016;108. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26823525.
- 115. Mahal BA, Aizer AA, Ziehr DR, et al. Trends in disparate treatment of African American men with localized prostate cancer across National Comprehensive Cancer Network risk groups. Urology 2014;84:386-392. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24975710.
- 116. Yamoah K, Johnson MH, Choeurng V, et al. Novel biomarker signature that may predict aggressive disease in African American men with prostate cancer. J Clin Oncol 2015;33:2789-2796. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26195723.
- 117. Zhang H, Messing EM, Travis LB, et al. Age and racial differences among PSA-detected (AJCC stage T1cN0M0) prostate cancer in the U.S.: a population-based study of 70,345 men. Front Oncol 2013;3:312. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24392353.
- 118. Vertosick EA, Poon BY, Vickers AJ. Relative value of race, family history and prostate specific antigen as indications for early initiation of prostate cancer screening. J Urol 2014;192:724-728. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24641912.
- 119. Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med

NCCN Guidelines Index
Table of Contents
Discussion

2016;375:443-453. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27433846.

120. Engel C, Loeffler M, Steinke V, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol 2012;30:4409-4415. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23091106.

- 121. Haraldsdottir S, Hampel H, Wei L, et al. Prostate cancer incidence in males with Lynch syndrome. Genet Med 2014;16:553-557. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24434690.
- 122. Raymond VM, Mukherjee B, Wang F, et al. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 2013;31:1713-1718. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23530095.
- 123. Rosty C, Walsh MD, Lindor NM, et al. High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Fam Cancer 2014;13:573-582. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25117503.
- 124. Ryan S, Jenkins MA, Win AK. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2014;23:437-449. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24425144.
- 125. Win AK, Lindor NM, Young JP, et al. Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst 2012;104:1363-1372. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22933731.
- 126. Ewing CM, Ray AM, Lange EM, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012;366:141-149. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22236224.

- 127. Xu J, Lange EM, Lu L, et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 2013;132:5-14. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23064873.
- 128. Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 1999;91:1310-1316. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10433620.
- 129. Agalliu I, Gern R, Leanza S, Burk RD. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 2009;15:1112-1120. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19188187.
- 130. Ford D, Easton DF, Bishop DT, et al. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 1994;343:692-695. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/7907678.

131. Gallagher DJ, Gaudet MM, Pal P, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 2010;16:2115-2121. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/20215531.

- 132. Kirchhoff T, Kauff ND, Mitra N, et al. BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 2004;10:2918-2921. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15131025.
- 133. Leongamornlert D, Mahmud N, Tymrakiewicz M, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012;106:1697-1701. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/22516946.

134. Liede A, Karlan BY, Narod SA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 2004;22:735-742. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/14966099.

NCCN Guidelines Index
Table of Contents
Discussion

- 135. Thompson D, Easton DF. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002;94:1358-1365. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12237281.
- 136. Tulinius H, Olafsdottir GH, Sigvaldason H, et al. The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet 2002;39:457-462. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/12114473.

- 137. van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 2005;42:711-719. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16141007.
- 138. Mersch J, Jackson MA, Park M, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 2015;121:269-275. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25224030.
- 139. Moran A, O'Hara C, Khan S, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 2012;11:235-242. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22187320.
- 140. Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31:1748-1757. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23569316.
- 141. Mitra A, Fisher C, Foster CS, et al. Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer 2008;98:502-507. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18182994.
- 142. Na R, Zheng SL, Han M, et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are

- associated with early age at death. Eur Urol 2017;71:740-747. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27989354.
- 143. Narod SA, Neuhausen S, Vichodez G, et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 2008;99:371-374. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18577985.
- 144. Thorne H, Willems AJ, Niedermayr E, et al. Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila) 2011;4:1002-1010. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21733824.
- 145. Tryggvadottir L, Vidarsdottir L, Thorgeirsson T, et al. Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 2007;99:929-935. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17565157.
- 146. Bancroft EK, Page EC, Castro E, et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol 2014;66:489-499. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24484606.
- 147. Schroder FH, Roobol-Bouts M, Vis AN, et al. Prostate-specific antigen-based early detection of prostate cancer--validation of screening without rectal examination. Urology 2001;57:83-90. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11164149.
- 148. Ankerst DP, Hoefler J, Bock S, et al. Prostate Cancer Prevention Trial risk calculator 2.0 for the prediction of low- vs high-grade prostate cancer. Urology 2014;83:1362-1367. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24862395.
- 149. Louie KS, Seigneurin A, Cathcart P, Sasieni P. Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis. Ann Oncol 2015;26:848-864. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25403590.

- 150. Nam RK, Kattan MW, Chin JL, et al. Prospective multi-institutional study evaluating the performance of prostate cancer risk calculators. J Clin Oncol 2011;29:2959-2964. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21690464.
- 151. Nam RK, Toi A, Klotz LH, et al. Assessing individual risk for prostate cancer. J Clin Oncol 2007;25:3582-3588. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17704405.
- 152. Roobol MJ, Steyerberg EW, Kranse R, et al. A risk-based strategy improves prostate-specific antigen-driven detection of prostate cancer. Eur Urol 2010;57:79-85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19733959.
- 153. Glass AS, Cary KC, Cooperberg MR. Risk-based prostate cancer screening: who and how? Curr Urol Rep 2013;14:192-198. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23532499.
- 154. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging Reporting and Data System: 2015, Version 2. Eur Urol 2016;69:16-40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26427566.
- 155. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012;22:746-757. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22322308.
- 156. Kuru TH, Roethke MC, Seidenader J, et al. Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer. J Urol 2013;190:1380-1386. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23608676.
- 157. Lamb BW, Tan WS, Rehman A, et al. Is prebiopsy MRI good enough to avoid prostate biopsy? A cohort study over a 1-year period. Clin Genitourin Cancer 2015;13:512-517. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26231912.

- 158. Pokorny MR, de Rooij M, Duncan E, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 2014;66:22-29. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24666839.
- 159. Serrao EM, Barrett T, Wadhwa K, et al. Investigating the ability of multiparametric MRI to exclude significant prostate cancer prior to transperineal biopsy. Can Urol Assoc J 2015;9:E853-858. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26788234.
- 160. Tonttila PP, Lantto J, Paakko E, et al. Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsynaive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol 2015. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26033153.
- 161. Weaver JK, Kim EH, Vetter JM, et al. Presence of magnetic resonance imaging suspicious lesion predicts Gleason 7 or greater prostate cancer in biopsy-naive patients. Urology 2016;88:119-124. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26545849.
- 162. Wysock JS, Mendhiratta N, Zattoni F, et al. Predictive value of negative 3T multiparametric prostate MRI on 12 core biopsy results. BJU Int 2016. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/26800439.
- 163. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015;313:390-397. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25626035.
- 164. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet

NCCN Guidelines Index
Table of Contents
Discussion

2017;389:815-822. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28110982.

165. van Leeuwen PJ, Hayen A, Thompson JE, et al. A multiparametric magnetic resonance imaging-based risk model to determine the risk of significant prostate cancer prior to biopsy. BJU Int 2017. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28207981.

166. Boesen L, Norgaard N, Logager V, Thomsen HS. Clinical outcome following low suspicion multiparametric prostate magnetic resonance imaging or benign magnetic resonance imaging guided biopsy to detect prostate cancer. J Urol 2017. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28235549.

- 167. Simmons LAM, Kanthabalan A, Arya M, et al. The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br J Cancer 2017;116:1159-1165. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28350785.
- 168. Lu AJ, Syed JS, Nguyen KA, et al. Negative multiparametric magnetic resonance imaging of the prostate predicts absence of clinically significant prostate cancer on 12-core template prostate biopsy. Urology 2017;105:118-122. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28322902.
- 169. Rosenkrantz AB, Verma S, Choyke P, et al. Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol 2016;196:1613-1618. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27320841.
- 170. Auprich M, Augustin H, Budaus L, et al. A comparative performance analysis of total prostate-specific antigen, percentage free prostate-specific antigen, prostate-specific antigen velocity and urinary prostate cancer gene 3 in the first, second and third repeat prostate biopsy. BJU Int 2012;109:1627-1635. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21939492.

171. Boegemann M, Stephan C, Cammann H, et al. The percentage of prostate-specific antigen (PSA) isoform [-2]proPSA and the Prostate Health Index improve the diagnostic accuracy for clinically relevant prostate cancer at initial and repeat biopsy compared with total PSA and percentage free PSA in men aged </=65 years. BJU Int 2016;117:72-79. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25818705.

172. Bruzzese D, Mazzarella C, Ferro M, et al. Prostate health index vs percent free prostate-specific antigen for prostate cancer detection in men with "gray" prostate-specific antigen levels at first biopsy: systematic review and meta-analysis. Transl Res 2014:164:444-451.

Available at: http://www.ncbi.nlm.nih.gov/pubmed/25035153.

173. De Luca S, Passera R, Bollito E, et al. Comparison of prostate cancer gene 3 score, prostate health index and percentage free prostate-specific antigen for differentiating histological inflammation from prostate cancer and other non-neoplastic alterations of the prostate at initial biopsy. Anticancer Res 2014;34:7159-7165. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25503144.

- 174. De Luca S, Passera R, Fiori C, et al. Prostate health index and prostate cancer gene 3 score but not percent-free Prostate Specific Antigen have a predictive role in differentiating histological prostatitis from PCa and other nonneoplastic lesions (BPH and HG-PIN) at repeat biopsy. Urol Oncol 2015;33:424 e417-423. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26162485.
- 175. Ferro M, Bruzzese D, Perdona S, et al. Prostate Health Index (Phi) and Prostate Cancer Antigen 3 (PCA3) significantly improve prostate cancer detection at initial biopsy in a total PSA range of 2-10 ng/ml. PLoS One 2013;8:e67687. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23861782.
- 176. Nordstrom T, Vickers A, Assel M, et al. Comparison between the four-kallikrein panel and Prostate Health Index for predicting prostate cancer. Eur Urol 2015;68:139-146. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25151013.

- 177. Perdona S, Bruzzese D, Ferro M, et al. Prostate health index (phi) and prostate cancer antigen 3 (PCA3) significantly improve diagnostic accuracy in patients undergoing prostate biopsy. Prostate 2013;73:227-235. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22821756.
- 178. Porpiglia F, Russo F, Manfredi M, et al. The roles of multiparametric magnetic resonance imaging, PCA3 and prostate health index-which is the best predictor of prostate cancer after a negative biopsy? J Urol 2014;192:60-66. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24518780.
- 179. Russo GI, Regis F, Castelli T, et al. A systematic review and metaanalysis of the diagnostic accuracy of Prostate Health Index and 4kallikrein panel score in predicting overall and high-grade prostate cancer. Clin Genitourin Cancer 2017;15:429-439 e421. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28111174.
- 180. Scattoni V, Lazzeri M, Lughezzani G, et al. Head-to-head comparison of prostate health index and urinary PCA3 for predicting cancer at initial or repeat biopsy. J Urol 2013;190:496-501. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23466239.
- 181. Vedder MM, de Bekker-Grob EW, Lilja HG, et al. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men. Eur Urol 2014;66:1109-1115. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25168616.
- 182. Gnanapragasam VJ, Burling K, George A, et al. The Prostate Health Index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population. Sci Rep 2016;6:35364. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27748407.
- 183. Oesterling JE, Jacobsen SJ, Chute CG, et al. Serum prostate-specific antigen in a community-based population of healthy men. Establishment of age-specific reference ranges. JAMA 1993;270:860-864. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7688054.

- 184. Morgan TO, Jacobsen SJ, McCarthy WF, et al. Age-specific reference ranges for prostate-specific antigen in black men. N Engl J Med 1996;335:304-310. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8663870.
- 185. Oesterling JE, Jacobsen SJ, Klee GG, et al. Free, complexed and total serum prostate specific antigen: the establishment of appropriate reference ranges for their concentrations and ratios. J Urol 1995;154:1090-1095. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7543605.
- 186. Moul JW. Targeted screening for prostate cancer in African-American men. Prostate Cancer Prostatic Dis 2000;3:248-255. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12497072.
- 187. Carter HB, Pearson JD, Metter EJ, et al. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA 1992;267:2215-2220. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1372942.
- 188. Carter HB, Ferrucci L, Kettermann A, et al. Detection of life-threatening prostate cancer with prostate-specific antigen velocity during a window of curability. J Natl Cancer Inst 2006;98:1521-1527. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17077354.
- 189. D'Amico AV, Chen MH, Roehl KA, Catalona WJ. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 2004;351:125-135. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15247353.
- 190. D'Amico AV, Renshaw AA, Sussman B, Chen MH. Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA 2005;294:440-447. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16046650.
- 191. Vickers AJ, Till C, Tangen CM, et al. An empirical evaluation of guidelines on prostate-specific antigen velocity in prostate cancer

NCCN Guidelines Index
Table of Contents
Discussion

detection. J Natl Cancer Inst 2011;103:462-469. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21350221.

- 192. Elshafei A, Li YH, Hatem A, et al. The utility of PSA velocity in prediction of prostate cancer and high grade cancer after an initially negative prostate biopsy. Prostate 2013;73:1796-1802. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24038200.
- 193. Wolters T, Roobol MJ, Bangma CH, Schroder FH. Is prostate-specific antigen velocity selective for clinically significant prostate cancer in screening? European Randomized Study of Screening for Prostate Cancer (Rotterdam). Eur Urol 2009;55:385-392. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18353529.
- 194. Loeb S, Roehl KA, Helfand BT, et al. Can prostate specific antigen velocity thresholds decrease insignificant prostate cancer detection? J Urol 2010;183:112-116. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19913814.
- 195. Eggener SE, Roehl KA, Catalona WJ. Prostatitis confounds the use of PSA velocity for prostate cancer detection [abstract]. Presented at the ASCO Prostate Cancer Symposium; 2006. Abstract 4.
- 196. Partin AW, Brawer MK, Subong EN, et al. Prospective evaluation of percent free-PSA and complexed-PSA for early detection of prostate cancer. Prostate Cancer Prostatic Dis 1998;1:197-203. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12496895.
- 197. Partin AW, Brawer MK, Bartsch G, et al. Complexed prostate specific antigen improves specificity for prostate cancer detection: results of a prospective multicenter clinical trial. J Urol 2003;170:1787-1791. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14532777.
- 198. Okihara K, Cheli CD, Partin AW, et al. Comparative analysis of complexed prostate specific antigen, free prostate specific antigen and their ratio in detecting prostate cancer. J Urol 2002;167:2017-2023; discussion 2023-2014. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/11956430.

- 199. Horninger W, Cheli CD, Babaian RJ, et al. Complexed prostate-specific antigen for early detection of prostate cancer in men with serum prostate-specific antigen levels of 2 to 4 nanograms per milliliter. Urology 2002;60:31-35. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12384160.
- 200. Okihara K, Fritsche HA, Ayala A, et al. Can complexed prostate specific antigen and prostatic volume enhance prostate cancer detection in men with total prostate specific antigen between 2.5 and 4.0 ng./ml. J Urol 2001;165:1930-1936. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11371884.
- 201. Babaian RJ, Naya Y, Cheli C, Fritsche HA. The detection and potential economic value of complexed prostate specific antigen as a first line test. J Urol 2006;175:897-901; discussion 901. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16469574.
- 202. Veneziano S, Pavlica P, Querze R, et al. Correlation between prostate-specific antigen and prostate volume, evaluated by transrectal ultrasonography: usefulness in diagnosis of prostate cancer. Eur Urol 1990;18:112-116. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1699766.
- 203. Benson MC, Whang IS, Pantuck A, et al. Prostate specific antigen density: a means of distinguishing benign prostatic hypertrophy and prostate cancer. J Urol 1992;147:815-816. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1371554.
- 204. Lujan M, Paez A, Llanes L, et al. Prostate specific antigen density. Is there a role for this parameter when screening for prostate cancer? Prostate Cancer Prostatic Dis 2001;4:146-149. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12497032.
- 205. Sozen S, Eskicorapci S, Kupeli B, et al. Complexed prostate specific antigen density is better than the other PSA derivatives for detection of prostate cancer in men with total PSA between 2.5 and 20 ng/ml: results of a prospective multicenter study. Eur Urol 2005;47:302-307. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15716190.

NCCN Guidelines Index
Table of Contents
Discussion

206. Veneziano S, Pavlica P, Compagnone G, Martorana G. Usefulness of the (F/T)/PSA density ratio to detect prostate cancer. Urol Int 2005;74:13-18. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/15711102.

207. Aksoy Y, Oral A, Aksoy H, et al. PSA density and PSA transition zone density in the diagnosis of prostate cancer in PSA gray zone cases. Ann Clin Lab Sci 2003;33:320-323. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12956448.

208. Allan RW, Sanderson H, Epstein JI. Correlation of minute (0.5 MM or less) focus of prostate adenocarcinoma on needle biopsy with radical prostatectomy specimen: role of prostate specific antigen density. J Urol 2003;170:370-372. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/12853777.

- 209. Radwan MH, Yan Y, Luly JR, et al. Prostate-specific antigen density predicts adverse pathology and increased risk of biochemical failure. Urology 2007;69:1121-1127. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17572199.
- 210. Catalona WJ, Southwick PC, Slawin KM, et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology 2000;56:255-260. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10925089.
- 211. Gittelman MC, Hertzman B, Bailen J, et al. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. The Journal of urology 2013;190:64-69. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23416644.
- 212. Bradley LA, Palomaki GE, Gutman S, et al. Comparative effectiveness review: prostate cancer antigen 3 testing for the diagnosis and management of prostate cancer. The Journal of urology 2013;190:389-398. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23545099.

- 213. Auprich M, Bjartell A, Chun FK, et al. Contemporary role of prostate cancer antigen 3 in the management of prostate cancer. European urology 2011;60:1045-1054. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21871709.
- 214. Aubin SM, Reid J, Sarno MJ, et al. PCA3 molecular urine test for predicting repeat prostate biopsy outcome in populations at risk: validation in the placebo arm of the dutasteride REDUCE trial. The Journal of urology 2010;184:1947-1952. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20850153.
- 215. Wei JT, Feng Z, Partin AW, et al. Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J Clin Oncol 2014;32:4066-4072. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25385735.
- 216. Filella X, Gimenez N. Evaluation of [-2] proPSA and Prostate Health Index (phi) for the detection of prostate cancer: a systematic review and meta-analysis. Clinical chemistry and laboratory medicine: CCLM / FESCC 2013;51:729-739. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23154423.
- 217. Lazzeri M, Haese A, Abrate A, et al. Clinical performance of serum prostate-specific antigen isoform [-2]proPSA (p2PSA) and its derivatives, %p2PSA and the prostate health index (PHI), in men with a family history of prostate cancer: results from a multicentre European study, the PROMEtheuS project. BJU international 2013;112:313-321. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23826841.
- 218. Loeb S. Prostate cancer: Prostate Health Index--improving screening in men with family history. Nature reviews. Urology 2013;10:497-498. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23938945.
- 219. Catalona WJ, Partin AW, Sanda MG, et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the

- 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol 2011;185:1650-1655. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21419439.
- 220. de la Calle C, Patil D, Wei JT, et al. Multicenter evaluation of the Prostate Health Index to detect aggressive prostate cancer in biopsy naive men. J Urol 2015;194:65-72. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25636659.
- 221. Loeb S, Shin SS, Broyles DL, et al. Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer. BJU Int 2017;120:61-68. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27743489.
- 222. Tosoian JJ, Druskin SC, Andreas D, et al. Prostate Health Index density improves detection of clinically significant prostate cancer. BJU Int 2017. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28058757.
- 223. Tosoian JJ, Druskin SC, Andreas D, et al. Use of the Prostate Health Index for detection of prostate cancer: results from a large academic practice. Prostate Cancer Prostatic Dis 2017;20:228-233. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28117387.
- 224. Vickers A, Cronin A, Roobol M, et al. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol 2010;28:2493-2498. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20421547.
- 225. Vickers AJ, Gupta A, Savage CJ, et al. A panel of kallikrein marker predicts prostate cancer in a large, population-based cohort followed for 15 years without screening. Cancer Epidemiol Biomarkers Prev 2011;20:255-261. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21148123.
- 226. Parekh DJ, Punnen S, Sjoberg DD, et al. A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur Urol 2015;68:464-470. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25454615.

- 227. Bryant RJ, Sjoberg DD, Vickers AJ, et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT Study. J Natl Cancer Inst 2015;107. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25863334.
- 228. Konety B, Zappala SM, Parekh DJ, et al. The 4Kscore(R) test reduces prostate biopsy rates in community and academic urology practices. Rev Urol 2015;17:231-240. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26839521.
- 229. Stewart GD, Van Neste L, Delvenne P, et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol 2013;189:1110-1116. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22999998.
- 230. Partin AW, Van Neste L, Klein EA, et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol 2014;192:1081-1087. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24747657.
- 231. Chevli KK, Duff M, Walter P, et al. Urinary PCA3 as a predictor of prostate cancer in a cohort of 3,073 men undergoing initial prostate biopsy. J Urol 2014;191:1743-1748. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24333241.
- 232. McKiernan J, Donovan MJ, O'Neill V, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2016;2:882-889. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27032035.
- 233. Tomlins SA, Day JR, Lonigro RJ, et al. Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur Urol 2016;70:45-53. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25985884.
- 234. Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. J Clin Oncol 2011;29:3659-3668. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21859993.

- 235. Perner S, Mosquera JM, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 2007;31:882-888. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17527075.
- 236. Young A, Palanisamy N, Siddiqui J, et al. Correlation of urine TMPRSS2:ERG and PCA3 to ERG+ and total prostate cancer burden. Am J Clin Pathol 2012;138:685-696. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23086769.
- 237. Sanda MG, Feng Z, Howard DH, et al. Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol 2017. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28520829.
- 238. Leyten GH, Hessels D, Smit FP, et al. Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin Cancer Res 2015;21:3061-3070. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25788493.
- 239. Rizzardi AE, Rosener NK, Koopmeiners JS, et al. Evaluation of protein biomarkers of prostate cancer aggressiveness. BMC Cancer 2014;14:244. Available at:
- $\underline{\text{https://www.ncbi.nlm.nih.gov/pubmed/24708576}}.$
- 240. Van Neste L, Hendriks RJ, Dijkstra S, et al. Detection of highgrade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol 2016;70:740-748. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27108162.
- 241. Presti JC, Jr., O'Dowd GJ, Miller MC, et al. Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J Urol 2003;169:125-129. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12478119.
- 242. Ukimura O, Coleman JA, de la Taille A, et al. Contemporary role of systematic prostate biopsies: indications, techniques, and implications

- for patient care. European urology 2013;63:214-230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23021971.
- 243. Robertson NL, Emberton M, Moore CM. MRI-targeted prostate biopsy: a review of technique and results. Nature reviews. Urology 2013;10:589-597. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/24061532.
- 244. Maccagnano C, Gallina A, Roscigno M, et al. Prostate saturation biopsy following a first negative biopsy: state of the art. Urol Int 2012;89:126-135. Available at:
- http://www.ncbi.nlm.nih.gov/pubmed/22814003.
- 245. Sivaraman A, Sanchez-Salas R, Barret E, et al. Transperineal template-guided mapping biopsy of the prostate. Int J Urol 2015;22:146-151. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25421717.
- 246. Rastinehad AR, Turkbey B, Salami SS, et al. Improving detection of clinically significant prostate cancer: MRI/TRUS fusion-guided prostate biopsy. J Urol 2013;191:1749-1754. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24333515.
- 247. Puech P, Rouviere O, Renard-Penna R, et al. Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy-prospective multicenter study. Radiology 2013;268:461-469. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23579051.
- 248. Porpiglia F, Manfredi M, Mele F, et al. Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naive patients with suspected prostate cancer. Eur Urol 2017;72:282-288. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27574821.
- 249. Mendhiratta N, Rosenkrantz AB, Meng X, et al. Magnetic resonance imaging-ultrasound fusion targeted prostate biopsy in a consecutive cohort of men with no previous biopsy: reduction of over

NCCN Guidelines Index
Table of Contents
Discussion

detection through improved risk stratification. J Urol 2015;194:1601-1606. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26100327.

250. Meng X, Rosenkrantz AB, Mendhiratta N, et al. Relationship between prebiopsy multiparametric magnetic resonance imaging (MRI), biopsy indication, and MRI-ultrasound fusion-targeted prostate biopsy outcomes. Eur Urol 2016;69:512-517. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26112001.

251. Hoeks CM, Schouten MG, Bomers JG, et al. Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 2012;62:902-909. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22325447.

252. Portalez D, Mozer P, Cornud F, et al. Validation of the European Society of Urogenital Radiology scoring system for prostate cancer diagnosis on multiparametric magnetic resonance imaging in a cohort of repeat biopsy patients. Eur Urol 2012;62:986-996. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22819387.

253. Sonn GA, Chang E, Natarajan S, et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 2014;65:809-815. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23523537.

254. Vourganti S, Rastinehad A, Yerram NK, et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol 2012;188:2152-2157. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23083875.

255. Roethke M, Anastasiadis AG, Lichy M, et al. MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol

2012;30:213-218. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21512807.

256. Sciarra A, Panebianco V, Ciccariello M, et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res 2010;16:1875-1883. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20197480.

257. Anastasiadis AG, Lichy MP, Nagele U, et al. MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur Urol 2006;50:738-748; discussion 748-739. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16630688.

258. Rais-Bahrami S, Siddiqui MM, Turkbey B, et al. Utility of multiparametric magnetic resonance imaging suspicion levels for detecting prostate cancer. J Urol 2013;190:1721-1727. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23727310.

259. Schoots IG, Roobol MJ, Nieboer D, et al. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 2015;68:438-450. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/25480312.

260. Nelson AW, Harvey RC, Parker RA, et al. Repeat prostate biopsy strategies after initial negative biopsy: meta-regression comparing cancer detection of transperineal, transrectal saturation and MRI guided biopsy. PLoS One 2013;8:e57480. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23460864.

261. Abdollah F, Novara G, Briganti A, et al. Trans-rectal versus transperineal saturation rebiopsy of the prostate: is there a difference in cancer detection rate? Urology 2011;77:921-925. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21131034.

NCCN Guidelines Index
Table of Contents
Discussion

- 262. Acher P, Dooldeniya M. Prostate biopsy: will transperineal replace transrectal? BJU international 2013;112:533-534. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23924418.
- 263. Grummet JP, Weerakoon M, Huang S, et al. Sepsis and 'superbugs': should we favour the transperineal over the transrectal approach for prostate biopsy? BJU Int 2014;114:384-388. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24612341.
- 264. Pepe P, Aragona F. Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology 2013;81:1142-1146. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23726443.
- 265. Vyas L, Acher P, Challacombe B, et al. Indications, results and safety profile of transperineal sector biopsies of the prostate: a single centre experience of 634 cases. BJU international 2013. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24053629.
- 266. Murphy DG, Weerakoon M, Grummet J. Is zero sepsis alone enough to justify transperineal prostate biopsy? BJU Int 2014;114:3-4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24964181.
- 267. Taira AV, Merrick GS, Galbreath RW, et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis 2010;13:71-77. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/19786982.

- 268. Merrick GS, Gutman S, Andreini H, et al. Prostate cancer distribution in patients diagnosed by transperineal template-guided saturation biopsy. Eur Urol 2007;52:715-723. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17337114.
- 269. Walz J, Graefen M, Chun FK, et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol 2006;50:498-505. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16631303.

- 270. Zaytoun OM, Moussa AS, Gao T, et al. Office based transrectal saturation biopsy improves prostate cancer detection compared to extended biopsy in the repeat biopsy population. J Urol 2011;186:850-854. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21788047.
- 271. Liss MA, Ehdaie B, Loeb S, et al. An update of the American Urological Association white paper on the prevention and treatment of the more common complications related to prostate biopsy. J Urol 2017. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28363690.
- 272. Djavan B, Waldert M, Zlotta A, et al. Safety and morbidity of first and repeat transrectal ultrasound guided prostate needle biopsies: results of a prospective European prostate cancer detection study. J Urol 2001;166:856-860. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11490233.
- 273. Loeb S, Vellekoop A, Ahmed HU, et al. Systematic review of complications of prostate biopsy. Eur Urol 2013;64:876-892. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23787356.
- 274. Loeb S, Carter HB, Berndt SI, et al. Complications after prostate biopsy: data from SEER-Medicare. J Urol 2011;186:1830-1834. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21944136.
- 275. Nam RK, Saskin R, Lee Y, et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol 2010;183:963-968. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20089283.
- 276. Pinsky PF, Parnes HL, Andriole G. Mortality and complications after prostate biopsy in the Prostate, Lung, Colorectal and Ovarian Cancer Screening (PLCO) trial. BJU international 2013. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24053621.
- 277. Feliciano J, Teper E, Ferrandino M, et al. The incidence of fluoroquinolone resistant infections after prostate biopsy--are fluoroquinolones still effective prophylaxis? J Urol 2008;179:952-955;

NCCN Guidelines Index
Table of Contents
Discussion

discussion 955. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/18207185.

278. Zaytoun OM, Vargo EH, Rajan R, et al. Emergence of fluoroquinolone-resistant Escherichia coli as cause of postprostate biopsy infection: implications for prophylaxis and treatment. Urology 2011;77:1035-1041. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21420152.

- 279. Akduman B, Akduman D, Tokgoz H, et al. Long-term fluoroquinolone use before the prostate biopsy may increase the risk of sepsis caused by resistant microorganisms. Urology 2011;78:250-255. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21705048.
- 280. Mosharafa AA, Torky MH, El Said WM, Meshref A. Rising incidence of acute prostatitis following prostate biopsy: fluoroquinolone resistance and exposure is a significant risk factor. Urology 2011;78:511-514. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21782225.

281. FDA Drug Safety Communication: FDA updates warnings for oral and injectable fluoroquinolone antibiotics due to disabling side effects. 2016. Available at:

https://www.fda.gov/Drugs/DrugSafety/ucm511530.htm. Accessed June 9, 2017.

282. Liss MA, Chang A, Santos R, et al. Prevalence and significance of fluoroquinolone resistant Escherichia coli in patients undergoing transrectal ultrasound guided prostate needle biopsy. J Urol 2011;185:1283-1288. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21334021.

283. Collins GN, Lloyd SN, Hehir M, McKelvie GB. Multiple transrectal ultrasound-guided prostatic biopsies--true morbidity and patient acceptance. Br J Urol 1993;71:460-463. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8499991.

284. Stirling BN, Shockley KF, Carothers GG, Maatman TJ. Comparison of local anesthesia techniques during transrectal ultrasound-guided biopsies. Urology 2002;60:89-92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12100930.

285. Hergan L, Kashefi C, Parsons JK. Local anesthetic reduces pain associated with transrectal ultrasound-guided prostate biopsy: a meta-analysis. Urology 2007;69:520-525. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17382157.

286. Lunacek A, Mrstik C, Simon J, et al. Combination of lidocaine suppository and periprostatic nerve block during transrectal prostate biopsy: a prospective randomized trial. Int J Urol 2014;21:1126-1130. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24974854.

287. Jindal T, Mukherjee S, Sinha RK, et al. Transrectal ultrasonography (TRUS)-guided pelvic plexus block to reduce pain during prostate biopsy: a randomised controlled trial. BJU Int 2015;115:892-896. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25046032.

- 288. Leibovici D, Zisman A, Siegel YI, et al. Local anesthesia for prostate biopsy by periprostatic lidocaine injection: a double-blind placebo controlled study. J Urol 2002;167:563-565. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11792919.
- 289. Schröder FH, Roobol MJ. PSA screening decision-making aid for patients, general practitioners and urologists: Societe Internationale D'Urologie; 2014. Available at: http://www.siu-urology.org/themes/web/assets/files/society/psa_testing_brochure.pdf.
- 290. Testing for Prostate Cancer. American Cancer Society; 2015. Available at: https://www.cancer.org/content/dam/cancer-org/cancer-control/en/booklets-flyers/testing-for-prostate-cancer-handout.pdf. Accessed August 11, 2017.

NCCN Guidelines Index
Table of Contents
Discussion

291. Bostwick DG, Cheng L. Precursors of prostate cancer. Histopathology 2012;60:4-27. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22212075.

292. Herawi M, Kahane H, Cavallo C, Epstein JI. Risk of prostate cancer on first re-biopsy within 1 year following a diagnosis of high grade prostatic intraepithelial neoplasia is related to the number of cores sampled. J Urol 2006;175:121-124. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16406886.

293. O'Dowd G J, Miller MC, Orozco R, Veltri RW. Analysis of repeated biopsy results within 1 year after a noncancer diagnosis. Urology 2000;55:553-559. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/10736500.

294. Taneja SS, Morton R, Barnette G, et al. Prostate cancer diagnosis among men with isolated high-grade intraepithelial neoplasia enrolled onto a 3-year prospective phase III clinical trial of oral toremifene. J Clin Oncol 2013;31:523-529. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23295793.

295. Thompson IM, Jr., Leach R. Prostate cancer and prostatic intraepithelial neoplasia: true, true, and unrelated? J Clin Oncol 2013;31:515-516. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/23295801.

296. Lefkowitz GK, Taneja SS, Brown J, et al. Followup interval prostate biopsy 3 years after diagnosis of high grade prostatic intraepithelial neoplasia is associated with high likelihood of prostate cancer, independent of change in prostate specific antigen levels. J Urol 2002;168:1415-1418. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/12352407.

297. Merrimen JL, Jones G, Srigley JR. Is high grade prostatic intraepithelial neoplasia still a risk factor for adenocarcinoma in the era of extended biopsy sampling? Pathology 2010;42:325-329. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20438403.

298. Chan TY, Epstein JI. Follow-up of atypical prostate needle biopsies suspicious for cancer. Urology 1999;53:351-355. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9933053.

299. Mian BM, Naya Y, Okihara K, et al. Predictors of cancer in repeat extended multisite prostate biopsy in men with previous negative extended multisite biopsy. Urology 2002;60:836-840. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12429311.

300. Klemann N, Roder MA, Helgstrand JT, et al. Risk of prostate cancer diagnosis and mortality in men with a benign initial transrectal ultrasound-guided biopsy set: a population-based study. Lancet Oncol 2017;18:221-229. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/28094199.