

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Cancer in People Living with HIV

Version 1.2018 — February 27, 2018

NCCN.org

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

- * Erin Reid, MD/Co-chair ‡ UC San Diego Moores Cancer Center
- * Gita Suneja, MD/Co-chair § Duke Cancer Institute
- * Richard F. Ambinder, MD, PhD † The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Kevin Ard, MD, MPH Φ Þ Massachusetts General Hospital Cancer Center

Robert Baiocchi, MD, PhD † The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

- * Stefan K. Barta, MD, MRCP † ‡ Þ Fox Chase Cancer Center
- * Evie Carchman, MD ¶ University of Wisconsin Carbone Cancer Center

Adam Cohen, MD † Huntsman Cancer Institute at the University of Utah

Neel Gupta, MD † Stanford Cancer Institute <u>NCCN</u> Mary Dwyer, MS Deborah Freedman-Cass, PhD * Kimberly L. Johung, MD, PhD § Yale Cancer Center/Smilow Cancer Hospital

Ann Klopp, MD, PhD § The University of Texas MD Anderson Cancer Center

Ann S. LaCasce, MD † Dana-Farber/Brigham and Women's Cancer Center

Chi Lin, MD § Fred & Pamela Buffett Cancer Center

Oxana V. Makarova-Rusher, MD † University of Michigan Comprehensive Cancer Center

Amitkumar Mehta, MD ‡ University of Alabama at Birmingham Comprehensive Cancer Center

 Manoj P. Menon, MD, MPH †
 Fred Hutchinson Cancer Research Center/ Seattle Cancer Care Alliance

David Morgan, MD ‡ Vanderbilt-Ingram Cancer Center

Nitya Nathwani, MD ‡ City of Hope Comprehensive Cancer Center

Continue

NCCN Guidelines Panel Disclosures

* Ariela Noy, MD ‡ Memorial Sloan Kettering Cancer Center

Frank Palella, MD Robert H. Lurie Comprehensive Cancer Center of Northwestern University

* Lee Ratner, MD, PhD † Þ Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Stacey Rizza, MD Φ Mayo Clinic Cancer Center

* Michelle A. Rudek, PhD, PharmD ∑ The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Jeff Taylor ¥ HIV + Aging Research Project - Palm Springs

Benjamin Tomlinson, MD † ‡ Case Comprehensive Cancer Center/ University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute

Chia-Ching J. Wang, MD †

* UCSF Helen Diller Family Comprehensive Cancer Center

 † Medical oncology
 ‡Hematology/Hematology oncology
 §Radiotherapy/Radiation oncology
 ¶ Surgery/Surgical oncology

- Þ Internal medicine
- \sum Pharmacology/Pharmacy
- Φ Infectious diseases
- ¥ Patient advocacy
- * Discussion Writing Committee Member

Version 1.2018, 02/27/18 © National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Cancer in People Living with HIV Panel Members

- Introduction (INTRO-1)
- AIDS-Defining Malignancies
- Cervical Cancer (HIV-1)
- Non–AIDS-Defining Malignancies
- Anal Carcinoma (HIV-2)
- Non-Small Cell Lung Cancer (HIV-3)
- Hodgkin Lymphoma (HIV-4)
- Principles of HIV Management While Undergoing Cancer Therapy (HIV-A)
- Principles of Systemic Therapy and Drug-Drug Interactions (HIV-B)
- Principles of Radiation Therapy (HIV-C)
- Principles of Surgery (HIV-D)
- Principles of Supportive Care (HIV-E)
- Principles of Imaging (HIV-F)

Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, <u>click here:</u> <u>nccn.org/clinical_trials/physician.html</u>.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated.

See <u>NCCN Categories of Evidence</u> and <u>Consensus</u>.

The NCCN Guidelines[®] are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network[®] (NCCN[®]) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network[®]. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2018.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

INTRODUCTION

- People living with HIV (PLWH) and AIDS have a higher incidence of many common cancers compared with the general population. AIDSdefining cancers include aggressive non-Hodgkin's lymphoma, Kaposi sarcoma, and invasive cervical cancer. Dramatically improved treatment of HIV over the last two decades has led to a decrease in the risk of AIDS development, an increase in immune function and survival, and a decline in AIDS-defining cancers in this population. Aging due to longer life expectancy with antiretroviral therapy (ART), coinfection with oncogenic infections, and a higher prevalence of carcinogen exposure (tobacco, alcohol) has led to increased incidence of many non-AIDS-defining cancers.
- PLWH who develop cancer should be co-managed with an oncologist and HIV specialist and should receive cancer treatment as per standard guidelines. Although modifications to ART may need to be made, HIV therapy should be continued during cancer therapy. Multidisciplinary decision-making, involving infectious disease and HIV specialists, is critical.

	1	Cervical cancer —	See Cervical Cancer in PLWH (HIV-1)		
AIDS-defining malignancies ^{a,b,c,d,e,f}	\leftarrow	►Kaposi sarcoma (<u>See NCCN Guidelines</u>	s for AIDS-Related Kaposi Sarcoma)		
	*	Aggressive non-Hodgkin's lymphomas ^g (<u>See NCCN Guidelines for B-Cell Lymphomas</u>)			
	1	Anal cancer ————————————————————————————————————	See Anal Cancer in PLWH (HIV-2)		
Non–AIDS-defining malignancies ^{a,b,c,d,e,f}		Non-small cell lung cancer ————	See Non-Small Cell Lung Cancer in PLWH (HIV-3)		
C C		Hodgkin lymphoma	See Hodgkin Lymphoma in PLWH (HIV-4)		
	À	Other non-AIDS-defining malignancies	See NCCN Guidelines for Treatment of Cancer by Site		
^a See Principles of HIV Management While Undergoing Cancer Therapy (HIV-A). ^b See Principles of Systemic Therapy and Drug-Drug Interactions (HIV-B). ^c See Principles of Radiation Therapy (HIV-C). ^d See Principles of Surgery (HIV-D).		apy and Drug-Drug Interactions (HIV-B). apy (HIV-C).	 ^eSee Principles of Supportive Care (HIV-E). ^fSee Principles of Imaging (HIV-F). ^gBurkitt lymphoma, diffuse large B-cell lymphoma (DLBCL), HHV8-positive DLBCL, NOS, primary effusion lymphoma, plasmablastic lymphoma, primary CNS lymphoma 		
		egory 2A unless otherwise indicated. he best management of any patient with cancer is in a cli	nical trial. Participation in clinical trials is especially encouraged.		

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

Cervical cancer in PLWH

- The risk of cervical cancer is elevated approximately 3- to 5-fold in PLWH.
- Persistent infection with high-risk human papillomavirus (HPV) leads to the development of cervical cancer.
- Premalignant cervical lesions are common in women living with HIV (WLWH). Treatment of these lesions are generally safe and effective regardless of HIV status. However, endocervical extension is more frequent among WLWH. Therefore, loop excision is less effective, with higher recurrence rates in WLWH than in HIV-negative patients.
- Non-malignant causes for lymphadenopathy should be considered in PLWH. Biopsy of suspicious/PET-avid nodes should be more strongly considered in WLWH and cervical cancer.
- WLWH with CIN or invasive cervical cancer should also be evaluated for field effect of HPV oncogenesis, including anal cancer or vulvar cancer.
- WLWH and cervical cancer should be referred to an HIV specialist to ensure they are on an effective ART regimen.
- WLWH should be treated for cervical cancer as per the <u>NCCN Guidelines for Cervical Cancer</u>, including use of concurrent chemotherapy for patients receiving definitive radiation treatment. Modifications to cancer treatment are not recommended based solely on HIV status.
- Poor performance status in WLWH and cervical cancer may be from HIV, cancer, or other causes. The reason for poor performance status should be considered when making treatment decisions. Treatment with ART may improve poor performance status related to HIV.
- Drug interactions can occur in patients with cervical cancer and HIV. Both an HIV pharmacist and an oncology pharmacist should be consulted. <u>See Principles of Systemic Therapy and Drug-Drug Interactions (HIV-B)</u>.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

Anal dysplasia and anal cancer screening in PLWH

- PLWH are at higher risk of premalignant anal epithelial changes compared to HIV-negative patients.
- While there are no national recommendations that exist for routine screening of anal cancer, many HIV specialists do screen PLWH for dysplasia by anal cytology, high resolution anoscopy, and annual digital anal exam, though the frequency and method of surveillance vary.
- If high-grade anal squamous intraepithelial lesions (high-grade anal intraepithelial neoplasia [AIN]) are identified, then high-resolution anoscopy should be performed, if available.
- There are multiple methods by which anal dysplasia is treated: topical therapy (fluorouracil, imiquimod), excision, and ablation. These treatments are safe in PLWH and offer short-term efficacy.
- However, treatment of anal dysplasia in PLWH is associated with a higher risk of recurrence in PLWH compared to HIV-negative patients.
- In a randomized controlled trial of PLWH who engage in receptive anal intercourse, electrocautery (ablation) was found to be better than topical therapy in the treatment of anal dysplasia, even though recurrence rates were still high.

Anal carcinoma in PLWH

- PLWH have an approximately 25- to 35-fold increased likelihood of being diagnosed with anal cancer compared with HIV-negative individuals, and anal cancer accounts for approximately 10% of cancers diagnosed in PLWH.
- Anal cancer in PLWH is often associated with persistent anal HPV infection.
- HPV-related disease in PLWH is often multifocal. Therefore, WLWH diagnosed with anal cancer should have colposcopic examination by a gynecologist for presence of vulvar, vaginal or cervical disease.
- Non-malignant causes for lymphadenopathy should be considered in PLWH. Suspicious PET-avid lymphadenopathy should be biopsied to rule out nodal metastasis of anal cancer or infectious etiology (consult with infectious disease specialist). If negative for cancer, refer for an infectious disease workup.

Anal carcinoma in PLWH (continued)

- PLWH with anal cancer should be co-managed by an oncologist and HIV specialist and should be treated for anal cancer as per the <u>NCCN Guidelines for Anal Carcinoma</u>.
- Modifications to cancer treatment should not be made solely on the basis of HIV status.
 - Surgical excision for appropriately selected early-stage T1 anal verge cancers is effective and safe in PLWH.
 - Although treatment response rates with chemoradiotherapy for anal cancer are high, up to 30% of patients will require abdominoperineal resection (APR) for persistent or recurrent disease. HIV status does not affect overall survival or disease-free survival in patients who require APR for recurrent or residual disease. HIV status is also not associated with worse postoperative outcomes after APR.
 - In PLWH, radiotherapy should be delivered via IMRT technique to spare as much normal tissue as possible without compromising target coverage.
- Post-treatment surveillance of PLWH should include more frequent digital rectal examinations and anoscopy than HIV-negative patients (every 3–6 months for 3 years).
- Anal cytology can be considered for the detection of anal dysplasia in survivors of anal cancer living with HIV, although its value in detection of recurrent anal cancer is limited.
- People who engage in receptive anal intercourse should discuss post-treatment pelvic physical therapy and anal dilators with an appropriate health care provider.
- Poor performance status in PLWH and anal cancer may be from HIV, cancer, or other causes. The reason for poor performance status should be considered when making treatment decisions. Treatment with ART may improve poor performance status related to HIV.
- Drug interactions can occur in patients with anal cancer and HIV. Both an HIV pharmacist and an oncology pharmacist should be consulted. <u>See Principles of Systemic Therapy and Drug-Drug</u> <u>Interactions (HIV-B)</u>.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

Non-small cell lung cancer in PLWH

- The risk of lung cancer is 2 to 5 times higher in PLWH than in HIV-negative individuals, and lung cancer accounts for approximately 11% of cancers diagnosed in this population.
- Screening for lung cancer with low-dose CT should be performed in PLWH as per the <u>NCCN Guidelines for Lung Cancer Screening</u>. However, it should be noted that PLWH may be at increased risk for the development of lung cancer compared to the general population.
- Smoking cessation should be discussed (See NCCN Guidelines for Smoking Cessation).
- PLWH with NSCLC should be co-managed with an oncologist and HIV specialist and should be treated for NSCLC as per the <u>NCCN</u> <u>Guidelines for Non-Small Cell Lung Cancer</u>. Modifications to cancer treatment should not be made solely on the basis of HIV status.
- PLWH may be more likely to have benign lung nodules than uninfected patients. Infectious granuloma and tuberculosis are possible differential diagnoses. An infectious disease workup should be performed when indicated. Treatment for possible non-malignant diagnoses can be considered before biopsy.
- If concurrent pulmonary Kaposi sarcoma is suspected, precautions should be taken because increased bleeding may occur with biopsies.
- Lung biopsies should be cultured for bacteria, fungi, and mycobacteria acid-fast bacilli (AFB).
- Non-malignant causes for lymphadenopathy should be considered in PLWH.
- Workup of brain lesions in patients with NSCLC and advanced HIV-related immunosuppression should include an evaluation to rule out infectious processes (eg, toxoplasmosis) or other malignancies such as non-Hodgkin's lymphoma.
- Poor performance status in PLWH and NSCLC may be from HIV, cancer, or other causes. The reason for poor performance status should be considered when making treatment decisions. Treatment with ART may improve poor performance status related to HIV.
- Drug interactions can occur in patients with NSCLC and HIV. Both an HIV pharmacist and an oncology pharmacist should be consulted. <u>See</u> <u>Principles of Systemic Therapy and Drug-Drug Interactions (HIV-B)</u>.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

Hodgkin lymphoma in PLWH

- PLWH are 5 to 14 times more likely to be diagnosed with Hodgkin lymphoma (HL) than HIV-negative individuals, and HL accounts for approximately 4% of cancer diagnosed in the PLWH population.
- Compared with HIV-uninfected people, PLWH more commonly present with mixed cellularity or lymphocyte-depleted histologies of HL. 90% of cases of HL in PLWH are Epstein-Barr virus (EBV)-associated. PLWH often present with more advanced disease, including extranodal disease and bone marrow involvement. Bone-marrow-only presentations sometime occur. B symptoms (ie, fever, night sweats, weight loss) are also more common in this population, and should always prompt investigation of opportunistic infection. In contrast to non-Hodgkin lymphoma in PLWH, central nervous system involvement is rare with HL.
- Interpretation of diagnostic and staging imaging may be complicated by the increased incidence of non-malignant lesions that may be mistaken for cancer spread or recurrence. <u>See Principles of Imaging (HIV-F)</u>.
- All of the standard HL regimens have been studied in PLWH. ABVD is less toxic than Stanford V or BEACOPP and therefore may be preferred in PLWH.
- For ABVD in advanced-stage HIV-associated HL, patients who have symptoms of pulmonary compromise or fall in diffusing capacity of the lungs for carbon monoxide (DLCO) can consider dropping bleomycin after 2 cycles, particularly with a PET/CT scan showing complete response.
- Whereas the routine use of growth factor is not recommended during ABVD treatment in the <u>NCCN Guidelines for Hodgkin Lymphoma</u> because of concerns with possible adverse interactions with bleomycin leading to lung toxicity, growth factors may be required in PLWH, especially if CD4+ T-cell count is low and in the setting of prolonged severe neutropenia or neutropenic fever.
- Similarly, whereas dose reduction is not recommended for neutropenia with ABVD in the <u>NCCN Guidelines for Hodgkin Lymphoma</u>, dose reductions may be appropriate in PLWH with severe and prolonged cytopenias.
- If CD4+ T-cell count is <200 cells/µL, consider prophylactic antibiotics for gram-negative bacteria and pneumocystis jiroveci pneumonia (PJP), in addition to appropriate opportunistic infection prophylaxis. <u>Guidelines for the Prevention and Treatment of Opportunistic</u> <u>Infections in HIV-Infected Adults and Adolescents</u>
- ▶ If CD4+ T-cell count is <100 cells/µL, consider dose reduction in early cycles. See Principles of Supportive Care (HIV-E).
- PET/CT-guided therapy in HIV-associated HL is feasible; however, care should be taken to recognize potential confounding factors (ie, nonmalignant causes for PET-avid regions).
- Poor performance status in PLWH and HL may be from HIV, cancer, or other causes. The reason for poor performance status should be considered when making treatment decisions. Treatment with ART may improve poor performance status related to HIV.
- Adverse reactions due to drug interactions are more common with ritonavir, cobicistat, and protease inhibitors and these antiretrovirals (ARVs) should be avoided. Drug interactions with non-nucleoside reverse transcriptase inhibitors are likely to result in decrease efficacy and should be used with caution. Zidovudine should be avoided due to myelosuppression. Didanosine and stavudine may cause additive peripheral neuropathy and should be avoided. Many HIV combination pills contain one or more of these medications. Modification of ART may need to be considered, and consultation with an HIV specialist, HIV pharmacist and oncology pharmacist is recommended. When alternate ART regimens are not available, consider holding ART until completion of course of chemotherapy. <u>See Principles of Systemic Therapy and Drug-Drug Interactions (HIV-B).</u>

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

PRINCIPLES OF HIV MANAGEMENT WHILE UNDERGOING CANCER THERAPY

- Linkage to HIV care from cancer providers
- → All patients with a cancer diagnosis should be screened for HIV.^{1,2}
- All PLWH with cancer should be co-managed by an oncologist and HIV specialist.
- HIV therapy should be initiated or continued during cancer therapy. ART interruptions should generally be avoided, due to the risk of immunologic compromise, opportunistic infection, and death.³ Continuation of ART might result in better tolerance of cancer treatment, higher response rates, and improved survival.
- ART may require modification by an HIV specialist in conjunction with an HIV pharmacist and an oncology pharmacist to minimize drugdrug interactions and toxicities.
- Cancer treatment should not be delayed for HIV workup and treatment, if possible.
- Routine HIV care in conjunction with HIV specialist during cancer therapy
- ART should be offered immediately (if patient not already receiving it), but may need to be adapted according to the cancer treatment plan.^{4,5} See Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV.
- ► To facilitate separate assessment of tolerability of ART and cancer treatment, consider initiating ART ≥7 days prior to start of cancer treatment or after cancer therapy has been initiated long enough for tolerance to be established. There may be circumstances when ART should be started immediately, regardless of the cancer therapy timing, such as with the diagnosis of progressive multifocal leukoencephalopathy (PML).
- In patients co-infected with hepatitis B, an ART regimen that treats both HIV and hepatitis B should be initiated.
- Laboratory testing should be scheduled for both before and after initiation of ART (See <u>Table 3 of Guidelines for the Use of Antiretroviral</u> <u>Agents in Adults and Adolescents Living with HIV</u>).</u>
- HIV viral load and CD4+ T-cell count monitoring (See <u>Table 4 of Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents</u> <u>Living with HIV</u>):
 - Of More frequent HIV viral load testing (eg, once a month for the first 3 months and then every 3 months⁶) may be needed due to potential interactions between ART and cancer-related drugs leading to decreased effectiveness of ART.
 - Consider measuring the CD4+ T-cell count more frequently in patients receiving cancer treatments anticipated to cause lymphopenia. Decreases in CD4+ T-cell counts attributable to cancer therapy are not necessarily reflective of HIV control, which is better measured by HIV viral load. A decrease in CD4+ T-cell count will still predict increased risk for opportunistic infections. Additional risk beyond that predicted by CD4+ T-cell counts may occur due to effects of cancer-related therapy on immune function.
- ▶ Smoking cessation should be discussed.^{7,8} (See NCCN Guidelines for Smoking Cessation).
- Primary and secondary prophylaxis for opportunistic infections during cancer treatment.
- > Patients should receive the prophylaxis indicated by their HIV status and cancer treatment. See Principles of Supportive Care (HIV-E).

<u>See References on</u> <u>HIV-A 2 of 2</u>.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

PRINCIPLES OF HIV MANAGEMENT WHILE UNDERGOING CANCER THERAPY

References

¹Branson BM, Handsfield HH, Lampe MA, et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm Rep 2006;55(RR-14);1-17.

²Rizza SA, MacGowan RJ, Purcell DW, et al. HIV screening in the health care setting: status, barriers, and potential solutions. Mayo Clin Proc 2012 Sep;87(9): 915-924.
 ³El-Sadr WM, Lundgren J, Neaton JD, et al. CD4+ count-guided interruption of antiretroviral treatment. Strategies for Management of Antiretroviral Therapy (SMART) Study Group. N Engl J Med 2006;355:2283-2296.

⁴Hessol NA, Pipkin S, Schwarcz S, et al. The impact of highly active antiretroviral therapy on non-AIDS-defining cancers among adults with AIDS. Am J Epidemiol 2007;165:1143-1153.

⁵Kitahata MM, Gange SJ, Abraham AG, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 2009;360:1815-1826. ⁶Torres HA, Mulanovich V. Management of HIV infection in patients with cancer receiving chemotherapy. Clin Infect Dis 2014;59:106-114.

⁷Anthonisen NR, Skeans MA, Wise RA, et al. The effects of smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 2005;142:233-239.

⁸A clinical practice guideline for treating tobacco use and dependence: A US Public Health Service report. The Tobacco Use and Dependence Clinical Practice Guideline Panel, Staff, and Consortium Representatives. JAMA 2000;283:3244-3254.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF SYSTEMIC THERAPY AND DRUG-DRUG INTERACTIONS

- Oncology and HIV clinicians, along with both an oncology pharmacist and HIV pharmacist, if available, should review proposed cancer therapy, supportive care medications and ART for possible drug-drug interactions (DDIs) and overlapping toxicities prior to initiation.
- Select ARVs can be administered safely with systemic cancer therapies. With continued development of new ARVs, effective alternatives are often available to patients when the existing ART is expected to affect metabolism or transport of, or share toxicities with, systemic cancer therapies.
- The possibility that DDIs may enhance treatment toxicity or decrease efficacy needs to be considered. In general, CYP450 (or any enzyme or drug transporter) inhibitors increase the substrate exposure resulting in increased toxicity, while inducers decrease the exposure resulting in decreased efficacy. <u>See Table 1: Systemic Cancer Therapy-ART Interactions by ART Drug Class</u>. The exception to this is a prodrug (eg, irinotecan or cyclophosphamide) where the metabolite is active and the opposite effect would be observed.
- The greatest concern for DDIs is with HIV regimens containing pharmacologic boosters (ie, ritonavir, cobicistat) and protease inhibitors. These drugs inhibit CYP3A/4 and thus may interact with agents metabolized by that pathway. HIV regimens containing integrase inhibitors without pharmacologic boosters are favored in the setting of malignancy, due to a lower potential for DDI.
- Non-nucleoside reverse transcriptase inhibitors (NNRTIs) induce CYP3A/4 and thus may cause the opposite DDI from the inhibitors.
- ART treatment guidelines caution against use of ritonavir- and cobicistat-boosted regimens and some NNRTIs in the context of cancer treatment (See <u>Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV</u>). When cancer therapy is expected to be myelosuppressive, zidovudine is contraindicated due to its likelihood to cause or exacerbate myelosuppression.
- Small case series favor integrase inhibitor-based ART during cancer therapy.^{1,2}
- If a potential DDI or overlapping toxicity exists, options include (in order of preference):
 - 1. substituting a different ARV with less DDI potential;
 - 2. selecting an alternative cancer therapy regimen with less DDI potential; and
 - 3. temporarily discontinuing ART (temporary discontinuation of ART should only be undertaken in consultation with the an HIV specialist), but only if:
 - ▶ the above options are not advisable, cure for the malignancy is the intent, and the chemotherapy treatment course is of short duration; or
 - ♦ the above options are not advisable, the malignancy has a poor prognosis, and palliation is the goal.
- Consultation with an HIV specialist in choosing or adapting an ART regimen is essential.

See Table 1: Systemic Cancer Therapy-ART Interactions by ART Drug Class (HIV-B 2 of 2)

¹Casado JL, Machuca I, Bañón S, et al. Raltegravir plus two nucleoside analogues as combination antiretroviral therapy in HIV-infected patients who require cancer chemotherapy. Antivir Ther 2015;20:773-777.

²Torres HA, Rallapalli V, Saxena A, et al. Efficacy and safety of antiretrovirals in HIV-infected patients with cancer. Clin Microbiol Infect 2014;20:O672-679.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF SYSTEMIC THERAPY AND DRUG-DRUG INTERACTIONS

Table 1: Systemic Cancer Therapy-ART Interactions by ART Drug Class

	Main Mechanism(s) of	Effect on	Potential for Clinically Significant Pharmacokinetic Interactions ^{3,4}	
ART Drug Class	Metabolism/Elimination	CYP450/Transporters	Effect of Cancer Drugs on ART	Effect of ART on Cancer Drugs
Nucleoside reverse- transcriptase inhibitors	 Renal excretion UDP-glucuronosyltransferases ATP-binding cassette transporters Solute carrier transporters 	No known effect or no clinically relevant effect via ATP-binding cassette transporters	Interaction unlikely or possible	Interaction unlikely or possible
Nucleotide reverse- transcriptase inhibitors	 Renal excretion ATP-binding cassette transporters Solute carrier transporters 	Inhibitor of CYP450 enzyme and ATP-binding cassette transporters	Potential for significant interaction	Interaction possible
Non-nucleoside reverse-transcriptase inhibitors	 CYP450 enzymes UDP-glucuronosyltransferases ATP-binding cassette transporters 	Inhibitors and inducers of CYP450 enzyme and transporters	Potential for significant interaction	Potential for significant interaction or potential critical interaction
HIV-1 protease inhibitors	 CYP450 enzymes ATP-binding cassette transporters UDP-glucuronosyltransferase 	Inhibitors and inducers of CYP450 enzyme and ATP-binding cassette transporters and solute carrier transporters	Potential for significant interaction	Major clinically significant interaction likely or potential critical interaction
Integrase strand- transfer inhibitors	 UDP-glucuronosyltransferases ATP-binding cassette transporters Solute carrier transporters 	Inhibitors and inducers of CYP450 enzyme and ATP-binding cassette and solute carrier transporters	Potential for significant interaction	Potential for significant interaction or potential critical interaction
Fusion inhibitors	Catabolism	No known effect or no clinically relevant effect	Interaction unlikely or possible	Interaction unlikely or possible
Entry inhibitors (chemokine receptor antagonists)	 CYP450 enzymes ATP-binding cassette transporters Solute carrier transporters 	No known effect or no clinically relevant effect via ATP-binding cassette transporters	Potential for significant interaction or potential critical interaction	Interaction unlikely or possible
Ritonavir- or cobicistat- boosted regimens	 CYP450 enzymes ATP-binding cassette transporters 	Inhibitors and inducers of CYP450 enzyme and ATP-binding cassette and solute carrier transporters	Potential for significant interaction	Major clinically significant interaction likely or potential critical interaction

³Depending on the likelihood for clinically significant pharmacokinetic interactions between cancer drugs and ART, dose adjustments, modification of therapy, and/or increased monitoring may be required (for cancer drugs, ART, or both). Drug package inserts for each individual agent should be consulted to determine the drug interaction potential and recommended dosing and monitoring instructions. Consultation with oncology and HIV clinicians, along with oncology and HIV pharmacists, if available, is strongly recommended.

⁴DDI potential/clinical relevance:

• Interaction unlikely: DDI is unlikely or there is a known minor interaction. Modification of therapy is not necessary.

• Interaction possible: DDI is possible based on drug pharmacology. No modification to therapy is necessary, but close monitoring for signs of toxicity is recommended.

• Potential for significant interaction: There is a potential for clinically significant DDI based on drug pharmacology. No modification to therapy is required, but close monitoring for signs of toxicity is recommended. If close monitoring is not feasible, then modification of therapy should be considered.

• Potential critical interaction: Clinically significant DDI is likely based on drug pharmacology or on known interaction. Drug doses should be adjusted or modification of therapy should be considered.

• Major clinically significant interaction likely: Co-administration is contraindicated, and therapy should be modified.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

PRINCIPLES OF RADIATION THERAPY¹

- HIV status alone should not be a criterion for decision-making regarding radiation therapy (RT). RT should be offered as part of the cancer management approach when indicated.
- RT can be administered for cure or palliation.
- Older studies conducted in the pre-ART era showed increased RT-related toxicity, particularly in patients with CD4+ T-cell counts <200 cells/µL. This risk may be less applicable to patients in ART-era, particularly those with CD4+ T-cell counts >200 cells/µL.
- More modern data suggest RT is effective and well-tolerated for certain cancers (eg, anal cancer); in other cancers, data are insufficient to recommend a change from standard therapy (eg, lung cancer).
- Extra caution and monitoring is required with concurrent chemoradiotherapy.
- Particular attention should be paid to limit dose to the following structures using conformal techniques like intensity-modulated radiotherapy (IMRT) or stereotactic body radiotherapy (SBRT) when deemed appropriate by the treating provider:
- Mucosal membranes
- ► Skin
- Bone marrow
- Nutritional support, pain control, and other supportive measures should be used to minimize radiotherapy interruptions.

¹Alongi F, Giaj-Levra N, Sciascia S, et al. Radiotherapy in patients with HIV: Current issues and review of the literature. Lancet Oncol 2018;18:e379-e393.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

PRINCIPLES OF SURGERY

- HIV status alone should not be a criterion for decision-making regarding surgical intervention, regardless of the procedure.
- All surgical patients should be treated with universal precautions, and no special precautions need to be taken with PLWH.
- Overall health (eg, organ dysfunction, nutritional state) has been found to be a more reliable predictor of surgical outcome than CD4+ T-cell count or viral load in PLWH. The data showing that low CD4+ T-cell counts are associated with poorer prognosis have been inconsistent and viral suppression has not been conclusively shown to improve surgical outcomes.¹⁻⁵ There are no additional presurgical or postsurgical laboratory values that are needed specific to PLWH beyond the normal workup and follow-up for a surgical patient.
- Surgical Outcomes:
- Surgery in PLWH for common malignancies (eg, prostate cancer, colon cancer) is safe and should be part of cancer management as indicated.^{6,7}
- Recent data demonstrate that clinical outcomes, length of stay, and complications are similar between PLWH and HIV-negative patients for most surgical procedures.⁸
- > A study of PLWH who required laparotomy found no increased risk of wound complications.⁹
- Data from anorectal surgery for benign disease (eg, hemorrhoids, fistulas) suggest that there can be issues with delayed wound healing in PLWH, especially if the CD4+ T-cell count is <50 cells/µL.¹⁰ However, other reports demonstrate that PLWH who undergo anorectal surgery experience normal wound healing.¹¹

¹Madiba TE, Muckart DJ, Thomson SR. Human immunodeficiency disease: how should it affect surgical decision making? World J Surg 2009;33:899-909. ²Bizer LS, Pettorino R, Ashikari A. Emergency abdominal operations in the patient with acquired immunodeficiency syndrome. J Am Coll Surg 1995;180:205-209. ³Yii MK, Saunder A, Scott DF. Abdominal surgery in HIV/AIDS patients: indications, operative management, pathology and outcome. Aust N Z J Surg 1995;65:320-326. ⁴Harris HW, Schecter WP. Surgical risk assessment and management in patients with HIV disease. Gastroenterol Clin North Am 1997;26:377-391.

⁵Cacala SR, Mafana E, Thomson SR, Smith A. Prevalence of HIV status and CD4+ T cell counts in a surgical cohort: their relationship to clinical outcome. Ann R Coll Surg Engl 2006;88:46-51.

⁶Izadmehr S, Leapman M, Hobbs AR, et al. Clinical characteristics and outcomes of HIV-seropositive men treated with surgery for prostate cancer. Int Urol Nephrol ____2016;48:1639-1645.

⁷Silberstein JL, Parsons JK, Palazzi-Churas K, et al. Robot-assisted laparoscopic radical prostatectomy in men with human immunodeficiency virus. Prostate Cancer Prostatic Dis 2010;13:328-332.

⁸Horberg MA, Hurley LB, Klein DB, et al. Surgical outcomes in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Arch Surg 2006;141:1238-1245.

⁹Buehrer JL, Weber DJ, Meyer AA, et al. Wound infection rates after invasive procedures in HIV-1 seropositive versus HIV-1 seronegative hemophiliacs. Ann Surg 1990;21:492-8.

¹⁰Lord RV. Anorectal surgery in patients infected with human immunodeficiency virus: factors associated with delayed wound healing. Ann Surg 1997;226(1):92-99.
 ¹¹Burke EC, Orloff SL, Freise CE, Macho JR, Schecter WP. Wound healing after anorectal surgery in human immunodeficiency virus-infected patients. Arch Surg 1991;126:1267-1270; discussion 70-1.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

PRINCIPLES OF SUPPORTIVE CARE

- The risk of infectious complications in PLWH is reduced with improved HIV control and aggressive infection prophylaxis; therefore, ART should be initiated and/or continued during cancer therapy.
- Select ARTs can be administered safely with systemic cancer therapy. With continued development of new ARVs, effective alternatives are
 often available to patients when the existing ARVs are expected to affect metabolism of or share toxicities with systemic cancer therapies.
 All ART initiation or changes should be done in consultation with an HIV specialist. <u>See Principles of Systemic Therapy and Drug-Drug
 Interactions (HIV-B)</u>.
- For cancer treatment regimens that include agents associated with delayed nausea/vomiting, steroids can be used briefly as
 premedication for or following chemotherapy. However, general use of steroids for antiemetic therapy should be limited in PLWH because
 steroid use may increase the risk of opportunistic infections.
- There is an increased risk of oral mucositis, esophagitis, and colitis secondary to mucosal sensitivity and opportunistic infections. A high index of suspicion of and early testing for opportunistic infections, including fungal and cytomegalovirus (CMV), is appropriate; early consultation with an infectious disease or HIV specialist is appropriate.
- Patients desiring fertility preservation should be referred to oncofertility for a discussion of options.

Other supportive care measures:

- For most supportive care situations related to cancer treatment, PLWH should be managed as per the appropriate NCCN Guidelines for Supportive Care (available at <u>www.NCCN.org</u>), including:
- NCCN Guidelines for Adult Cancer Pain
- NCCN Guidelines for Antiemesis
- NCCN Guidelines for Cancer-Related Fatigue
- NCCN Guidelines for Distress Management
- NCCN Guidelines for Palliative Care
- For general recommendations for vaccination in patients with cancer, <u>see NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections</u>.
- ▶ Generally, live virus vaccines should not be administered to PLWH with CD4+ T-cell counts <200 cells/µL.</p>
- PLWH aged 50 years and older can receive the new recombinant zoster vaccine. Dooling K, Guo A, Patel M, et al. Recommendations of the Advisory Committee on Immunization Practices for use of herpes zoster vaccines. MMWR Morb Mortal Wkly Rep 2018;67:103-108.

See Infectious Prophylaxis for Patients Receiving Therapy (HIV-E 2 OF 2)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

NCCN Guidelines Index Table of Contents Discussion

NCCN Guidelines Version 1.2018 Cancer in People Living with HIV

PRINCIPLES OF IMAGING

- Interpretation of imaging for the workup, staging, and surveillance of PLWH who have cancer is complicated by the increased incidence of non-malignant lesions that may be mistaken for cancer spread or recurrence.
- ▶ Lymphadenopathy seen on 18F-FDG PET/CT can be malignant or can result from opportunistic infections or HIV directly.¹
- → Lung lesions may be malignant or may result from opportunistic infections, drug reactions, or immune activation.
- > Brain lesions may be malignant or may result from opportunistic infections, vascular complications, or hydrocephalus.
- Opportunistic infections and HIV-related adenopathy are more common in patients with higher viral loads and lower CD4+ T-cell counts.
- An infectious disease workup should be considered as clinically appropriate for PLWH whose imaging shows lymphadenopathy or lesions in the spleen, lungs, brain, bone, liver, and gastrointestinal tract, especially in the presence of a low CD4+ T-cell count and concurrent B symptoms.
- Lesions of uncertain etiology should be biopsied to confirm cancerous histology.

¹Davison J, Subramaniam R, Surasi D, et al. FDG PET/CT in patients with HIV. AJR Am J Roentgenol 2011;197:284-294.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

Table of Contents

Overview Literature Search Criteria and Guidelines Update Methodology . Disparities in Cancer Care for PLWH	MS-2 MS-3
HIV Management During Cancer Therapy HIV Screening	
Linkage to HIV Care	
HIV Therapy During Cancer Treatment	MS-4
Opportunistic Infection Prophylaxis	
Smoking Cessation in PLWH Who Have Cancer	MS-5
Recommendations for Cancer Management in PLWH	MS-5
Cancer Workup in PLWH	MS-5
Drug-Drug Interactions: Systemic Cancer Therapy and ART	MS-6
Radiation Therapy in PLWH	MS-7
Cancer Surgery in PLWH	MS-8
Supportive Care During Cancer Therapy in PLWH	MS-8

Recommendations for Specific Cancers in PLWH	MS-9
Non-Hodgkin's Lymphoma (NHL) in PLWH	MS-9
Kaposi Sarcoma in PLWH	
Lung Cancer in PLWH	
Screening for Lung Cancer in PLWH	MS-9
Workup for Lung Cancer in PLWH	MS-10
Management of Lung Cancer in PLWH	MS-10
Anal Cancer in PLWH	
Screening for and Management of Precancerous Anal	
in PLWH	
Workup for Anal Cancer in PLWH	MS-12
Management of Anal Cancer in PLWH	
Surveillance and Survivorship in PLWH Treated for Ana	
	MS-13
Hodgkin Lymphoma in PLWH	
Workup for Hodgkin Lymphoma in PLWH	
Management of Hodgkin Lymphoma in PLWH	
Cervical Cancer in PLWH	
Management of Precancerous Cervical Lesions in PLW	
Workup for Cervical Cancer in PLWH	
Management of Cervical Cancer in PLWH	
Summary	
References	

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

Overview

In 2017, it is estimated that more than 1.1 million people in the United States are living with human immunodeficiency virus (HIV) infection.¹ Without treatment, HIV infection causes acquired immunodeficiency syndrome (AIDS) and AIDS-defining cancers: aggressive non-Hodgkin's lymphoma (NHL), Kaposi sarcoma, and invasive cervical cancer.^{2,3} Dramatically improved treatment of HIV over the last two decades has decreased the risk of AIDS development, improved immune function and survival, and led to a decline in AIDS-defining cancers in this population.⁴⁻⁶ People living with HIV (PLWH) are living longer and healthier lives; however, they are experiencing an increased risk of many non-AIDS–defining cancers.⁷⁻¹²

An estimated 7760 PLWH were diagnosed with cancer in the United States in 2010, representing an approximately 50% increase over the expected number of cancers in the general population.¹³ Other studies have also noted a higher risk for developing many cancers in PLWH than in the general population, likely due to underlying immune deficiency and co-infection with viruses such as human papillomavirus (HPV), human herpesvirus 8 (HHV-8), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV).¹⁴⁻¹⁸ In addition, the prevalence of other cancer risk factors in the HIV population (eg, smoking, heavy alcohol consumption) likely plays a role.¹⁹⁻²³

The proportions of each major cancer type among total incident cancer cases occurring in PLWH in the United States during 2010 were:¹³

٠	NHL	21%
٠	Kaposi sarcoma	12%
٠	Lung cancer	11%
٠	Anal cancer	10%
•	Prostate cancer	7%

Liver cancer	5%
Colorectal cancer	5%
Hodgkin lymphoma	4%
Oral/pharyngeal cancer	4%
Female breast cancer	2%
Cervical cancer	1%

These NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Cancer in People Living with HIV provide treatment recommendations for PLWH who develop non-small cell lung cancer (NSCLC), anal cancer, Hodgkin lymphoma, and cervical cancer. In addition, the panel outlines general advice for this population regarding HIV management during cancer therapy; drug-drug interactions (DDIs) between antiretroviral treatments and cancer therapies; and workup, radiation therapy, surgical management, and supportive care in PLWH who have cancer. The panel based its recommendations on relevant data when available and on expert consensus for situations where data were not available. These guidelines are intended to assist health care providers with clinical decision-making for PLWH who have cancer. This Discussion elaborates on the guidelines and provides an overview of the literature supporting the included recommendations.

Recommendations for the management of NHL and Kaposi sarcoma in PLWH are available in the NCCN Guidelines for B-Cell Lymphomas and the NCCN Guidelines for AIDS-Related Kaposi Sarcoma, respectively (available at <u>www.NCCN.org</u>).

Literature Search Criteria and Guidelines Update Methodology

Prior to the development of the NCCN Guidelines for Cancer in People Living with HIV, an electronic search of the PubMed database was

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

performed to obtain key literature in the field published between April 11, 2007 and April 11, 2017, using the following search terms: (cancer or malignancy or carcinoma or adenocarcinoma or lymphoma or leukemia or melanoma or sarcoma or neoplasia) and (HIV or AIDS). The PubMed database was chosen because it remains the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature.²⁴

The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV; Practice Guideline; Randomized Controlled Trial; Meta-Analysis; Systematic Reviews; and Validation Studies.

The PubMed search resulted in 771 citations, and their potential relevance was examined. The data from key PubMed articles and articles from additional sources deemed as relevant to these Guidelines have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). Recommendations for which high-level evidence is lacking are based on the panel's review of lower-level evidence and expert opinion.

The complete details of the Development and Update of the NCCN Guidelines are available on the NCCN website (www.NCCN.org).

Disparities in Cancer Care for PLWH

In general, PLWH who develop cancer have higher mortality compared with the general cancer population.²⁵⁻²⁸ Reasons for this increased mortality include delayed diagnoses, advanced cancer stage, other comorbidities, and immunosuppression in PLWH.^{26,29-31} However, there is also significant disparity in cancer treatment between PLWH and the general cancer population, with many PLWH not receiving any cancer

treatment at all.^{32,33} Results of a survey of 500 medical and radiation oncologists in the United States suggest that lack of consensus guidelines and provider education contributes to the sub-standard cancer care often offered to patients with HIV and cancer.³⁴ It is the hope of the NCCN panel that these guidelines can help to fill that gap in education and enable health care providers to provide optimal cancer care to PLWH.

HIV Management During Cancer Therapy

HIV Screening

One out of every 7 people in the United States who are infected with HIV are not aware of their infection status.¹ Infected individuals who are unaware of their HIV status do not receive the clinical care they need to reduce HIV-related morbidity and mortality and may unknowingly transmit HIV.³⁵ The Centers for Disease Control and Prevention (CDC) therefore recommends HIV screening for all patients in all health care settings unless the patient declines testing (opt-out screening).³⁶

HIV testing may be particularly important in patients with cancer, because identification of HIV infection has the potential to improve clinical outcomes.³⁷ Results of a retrospective cohort study at MD Anderson Cancer Center revealed, however, that the rate of HIV testing in cancer clinics from 2007 to 2009 was only 19.3%.³⁸ Analysis of data from the 2009 Behavioral Risk Factor Surveillance System showed that only 41% of U.S. cancer survivors <65 years of age reported ever being tested for HIV.³⁹ Race, other demographic characteristics, and tumor type influenced the likelihood of receiving an HIV test in both studies.

The NCCN panel supports the CDC recommendation that all patients diagnosed with cancer who do not opt-out should be tested for HIV if not already known to have a documented HIV infection.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

Linkage to HIV Care

The HIV Care Continuum Initiative indicates that all patients diagnosed with HIV should be referred to an HIV specialist.⁴⁰ Linkage to care and initiation of antiviral therapy has been shown to improve viral suppression.^{41,42} Early initiation of ART has also been shown to improve survival in PLWH and lower incidence of AIDS-related malignancies.^{43,44} Linkage to HIV care is essential for PLWH who have cancer; therefore, the oncology team should refer all PLWH who have cancer to an HIV specialist if they do not already have one. The HIV.gov website has a map that can be used to locate HIV services: <u>https://locator.hiv.gov/</u>.

HIV Therapy During Cancer Treatment

HIV treatment for PLWH who have cancer should be initiated and maintained by an HIV specialist, in collaboration with the oncology team. If the patient has already started ART, it should be continued during cancer treatment, although modifications may be needed. For patients who have not yet started ART, it should be initiated either \geq 7 days prior to the start of cancer treatment or long enough after cancer therapy has been initiated that it is possible to distinguish between adverse effects attributable to cancer chemotherapy versus those attributable to ART.

ART interruptions during cancer treatment should generally be avoided, because they increase the risk of immunologic compromise, opportunistic infection, and death.⁴⁵ Continuation of ART may also result in better tolerance of cancer treatment, higher response rates, and improved survival.^{46,47} ART can be modified as needed based on DDIs or overlapping toxicities with cancer therapy (see *Drug-Drug Interactions: Systemic Cancer Therapy and ART*, below).

Laboratory testing, HIV viral load, and CD4+ T-cell monitoring should generally be performed as per normal schedules for PLWH.⁴⁸ However,

more frequent HIV viral load testing (eg, once a month for the first 3 months and then every 3 months) may be needed if systemic cancer therapy is used, especially if treatment is anticipated to cause lymphopenia.⁴⁹ In the setting of chemotherapy-associated lymphopenia, HIV viral load monitoring more accurately reflects control of HIV compared with CD4+ T-cell count. The depth of CD4+ T-cell suppression informs the risk of opportunistic infections.

Opportunistic Infection Prophylaxis

The occurrence of opportunistic infections in PLWH has decreased in the ART era, mainly because effective ART reduces infection risk as CD4+ T-cell counts rise.^{6,50-52} Furthermore, improvements in prophylaxis and treatment of opportunistic infections in PLWH has further reduced risk.^{52,53} Still, opportunistic infections represent a major cause of morbidity and mortality in PLWH.^{52,53}

The risk of bacterial, fungal, and viral infections is elevated in patients with cancer, who may experience immunosuppression resulting from cancer treatment and sometimes from the disease itself (eg, hypogammaglobulinemia in chronic lymphocytic leukemia or multiple myeloma).⁵⁴⁻⁵⁸ In particular, chemotherapy can cause neutropenia, which is a major risk factor for the development of infections.⁵⁹ The frequency and severity of infection are inversely proportional to the neutrophil count, with the risks of severe infection and bloodstream infection greatest (approximately 10%–20%) at neutrophil counts below 100 cells/mcL.⁶⁰ Newer targeted agents are also associated with immunosuppression and increased infection risk.⁶¹

PLWH may be more susceptible to infectious complications following chemotherapy than their uninfected counterparts,⁶² and low CD4+ T-cell counts appear to increase the risk of febrile neutropenia.⁶³ Furthermore, data show that certain chemotherapy regimens can cause a sustained

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

drop in CD4+ T-cell counts and an increased risk of opportunistic infections.⁶⁴ Other regimens, however, appear to have similar effects on myelosuppression and infectious complications in PLWH and HIV-negative patients with cancer.⁶⁵

Overall, the NCCN panel recommends that PLWH who have cancer should receive the prophylaxis indicated by their HIV status and cancer treatment. Specific recommendations for PLWH receiving cancer therapy for which profound immunosuppression/myelosuppression is anticipated are outlined in the guidelines above (see *Principles of Supportive Care*). The U.S. Department of Health and Human Services' Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents (available at www.aidsinfo.nih.gov/guidelines) and the NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections (available at www.NCCN.org) also contain recommendations that may be relevant to this population. If febrile neutropenia occurs in spite of prophylaxis, consultation with an infectious disease specialist is strongly recommended.

Smoking Cessation in PLWH Who Have Cancer

Smoking cessation should be offered to PLWH who smoke and have cancer (see the NCCN Guidelines for Smoking Cessation, available at <u>www.NCCN.org</u>). Smoking cessation after a cancer diagnosis in the general population has been linked with improved general health and well-being, reduced treatment-related complications, decreased cancer recurrence, fewer second primary tumors, and improved survival.⁶⁶⁻⁷³ Data on the effects of smoking cessation specific to PLWH after a cancer diagnosis are lacking.

Recommendations for Cancer Management in PLWH

Special considerations for cancer management in PLWH and recommendations for the management of specific cancers in PLWH are discussed herein. Overall, the NCCN panel recommends that most PLWH who develop cancer should be offered the same cancer therapies as HIV-negative individuals, and modifications to cancer treatment should not be made solely on the basis of HIV status. Inclusion of PLWH in cancer clinical trials should be encouraged whenever feasible.

Cancer Workup in PLWH

Workup for PLWH who have cancer is complicated by the increased incidence of non-malignant lesions that may be mistaken for cancer spread or recurrence.^{74,75} For example, HIV viremia and opportunistic infections commonly cause lymphadenopathy in PLWH, which can be seen on F-18 FDG PET/CT.^{76,77} Nonmalignant causes of lymphadenopathy are more common in patients with higher viral loads and lower CD4+ T-cell counts.⁷⁸ Therefore, patients with cancer and HIV infection should have an infectious disease workup for positive lymph nodes as clinically indicated.

Similarly, an infectious disease workup is recommended as indicated for PLWH with cancer who develop splenic, brain, lung, liver, or gastrointestinal lesions, especially in the presence of a low CD4+ T-cell count and concurrent B symptoms. Opportunistic infections in the lung include mycobacterium tuberculosis (MTB), cytomegalovirus (CMV), and pneumocystis carinii pneumonia (PCP).⁷⁹ Furthermore, non-infectious, non-malignant pulmonary manifestations of HIV can be difficult to interpret on imaging studies, including drug reactions and immune activation.^{79,80} Brain lesions seen in PLWH may result from opportunistic infections, such as viral encephalitis, aspergillosis,

NCCN Network®

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

toxoplasmosis, cryptococcosis, bacterial meningitis, tuberculosis, progressive multifocal leukoencephalopathy, and mycobacterium avium complex (MAC).^{81,82} Benign, non-infectious brain lesions can also occur in PLWH (eg, vascular complications, hydrocephalus).^{81,82} Bone lesions may occur with MTB infection, bacillary angiomatosis, and use of tenofovir.⁸³⁻⁸⁵ Gastrointestinal lesions commonly occur during infection with CMV, candida, and cryptosporidium.⁸⁶ Liver lesions may be caused by multiple organisms including MTB, MAC, and CMV.⁸⁷ Lesions of uncertain etiology should be biopsied to confirm cancerous histology.

Drug-Drug Interactions: Systemic Cancer Therapy and ART

DDIs between anticancer therapy and antiretrovirals were first noted with the increased incidence of mucositis in PLWH who had NHL who were treated with both the protease inhibitor saguinavir and the chemotherapy regimen cyclophosphamide/doxorubicin/etoposide.88 DDIs depend on a variety of factors, including the route of elimination and the effect on CYP450 and other drug transporter or drugmetabolizing enzymes of both of the drugs involved.^{49,89} Depending on the mechanism of the interaction, DDIs can result in 1) decreased exposure and reduced efficacy of the anticancer or antiretroviral agent; or 2) increased exposure and increased toxicity of the anticancer or antiretroviral agent. In general, enzyme inhibitors increase the substrate exposure and thus increase toxicity, whereas enzyme inducers decrease the substrate exposure and reduce efficacy. The exception to this rule is for prodrugs (eq, irinotecan, cyclophosphamide) where the metabolite is the active agent. In these cases, the DDIs would be reversed (ie, enzyme inhibitors decrease efficacy; enzyme inducers increase toxicity).

The greatest concern for DDIs is with HIV regimens containing pharmacologic boosters (ie, ritonavir, cobicistat). These drugs inhibit

CYP3A, increasing the exposure of protease inhibitors (eg, atazanavir, darunavir, saquinavir) and thus the effectiveness of ART.⁹⁰ These boosters may also increase exposure to and toxicity associated with any drug, including anti-cancer agents metabolized by CYP3A. In fact, preclinical studies in mice show that CYP3A inhibitors can alter exposure to erlotinib and docetaxel.^{91,92} A phase l/pharmacokinetic study in 19 PLWH with cancer found that those participants receiving ritonavir-based ART experienced greater toxicity at a lower dose of sunitinib than those receiving non-ritonavir-based ART.⁹³ Furthermore, a retrospective analysis of PLWH treated for Hodgkin lymphoma showed that concomitant ritonavir-based HIV therapy and vinblastine can result in irreversible neurologic toxicity.⁹⁴

Another type of ART that can cause DDIs with cancer therapy is nonnucleoside reverse transcriptase inhibitors, which induce CYP3A. These drugs may thus decrease exposure and efficacy of cancer agents metabolized by CYP3A. A preclinical mouse study showed that a CYP3A inducer decreased erlotinib exposure.⁹¹

HIV regimens containing integrase inhibitors without pharmacologic boosters are favored in the setting of malignancy, because of their lower potential for DDIs. Small case series have shown that integrase inhibitor-based ART is superior to other ART regimens during cancer therapy.^{95,96} In one of these studies, data from 154 PLWH with cancer seen at the University of Texas MD Anderson Cancer Center between 2001 and 2012 were reviewed.⁹⁶ Non-nucleoside reverse transcriptase inhibitors and integrase strand-transfer inhibitors had comparable antiviral efficacy. The activity of these two classes was superior to the antiviral activity of protease inhibitors, but the integrase inhibitors were better tolerated during cancer therapy.

NCCN National Comprehensive Cancer Network®

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

ART regimens and cancer therapies that are not involved in the same metabolic pathways can still be problematic to coadminister because of overlapping toxicities. One major concern is for neuropathy, which is associated with many cancer drugs (eg, platinum agents, taxanes, vinca alkaloids) and certain nucleoside reverse transcriptase inhibitors (eg, didanosine, stavudine).⁹⁷ Another example is neutropenia, which can be a side effect of boosted protease inhibitors and integrase inhibitors and is a common side effect of many chemotherapy regimens.^{98,99} Other overlapping toxicities of cancer therapy and ART can also affect the liver, cardiovascular system, and kidneys.^{49,100-102}

Despite the possibility for DDIs, select antiretrovirals can be safely coadministered with chemotherapy. Oncology and HIV clinicians, along with HIV and oncology pharmacists, if available, should review proposed cancer therapy and ART for possible DDIs and overlapping toxicity concerns prior to initiation of therapy. Consultation of the drug package inserts for further information is also recommended. Modification of ART or cancer therapy or increased monitoring may be required. With the continued development of new ART, effective alternatives are often available to patients when the currently used ART is expected to affect the metabolism of or share toxicities with systemic cancer therapies. Consultation with an HIV specialist in choosing or adapting ART regimens is essential.

If a potential DDI exists, the panel lists the following options (in order of preference):

- 1. Substitution of a different antiretroviral with less DDI potential
- 2. Selection of an alternative cancer therapy regimen with less DDI potential
- 3. Temporary discontinuation of ART but only in consultation with the patient's HIV specialist and only if:

- a. The above options are not advisable, cure for the malignancy is the intent, and the chemotherapy treatment course is of short duration; or
- b. The above options are not advisable, the malignancy has a poor prognosis, and palliation is the goal.

Radiation Therapy in PLWH

Some studies conducted in the pre-ART era showed increased radiation-related toxicity in PLWH, particularly in patients with CD4+ Tcell counts <200 cells/ μ L.¹⁰³⁻¹⁰⁵ This risk may be less applicable to PLWH in the ART era, particularly those with CD4+ T-cell counts >200 cells/ μ L. In fact, more modern data suggest radiation therapy for certain cancers (eg, anal cancer; see below) is effective and well-tolerated in PLWH. For other cancers, however, data on the safety and efficacy of radiation therapy specific to PLWH are limited (eg, lung cancer).¹⁰⁶

The data on the use of radiation in PLWH who have anal cancer are particular strong, with >20 clinical studies published.¹⁰⁶ One retrospective cohort study included 175 PLWH and 1009 HIV-negative patients with anal cancer in the ART era.¹⁰⁷ No differences were seen in survival after chemoradiation treatment based on HIV status. In addition, a prospective study of 36 patients with anal cancer that included 14 PLWH found no differences in overall survival or in acute or late toxicities.¹⁰⁸

In summary, when radiation therapy is indicated in the management of patients with cancer, HIV status alone should not be a criterion for decision-making regarding treatment. The panel recommends that particular attention be paid to limit dose to mucosal membranes, skin, and bone marrow using conformal techniques like intensity-modulated radiation therapy (IMRT) or stereotactic body radiation therapy (SBRT) for PLWH, as deemed appropriate by the treating provider. The panel

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

also notes that extra caution and monitoring is required with use of concurrent chemoradiation in PLWH. Furthermore, nutritional support, pain control, and other supportive measures should be used to minimize radiation therapy interruptions in this population.

Cancer Surgery in PLWH

Older data from anorectal surgery for benign disease (eg, hemorrhoids, fistulas) indicate that PLWH can experience delayed wound healing, especially if the CD4+ T-cell count is <50/µL.¹⁰⁹ Other reports, however, demonstrate that PLWH who undergo anorectal surgery have uncomplicated wound healing.¹¹⁰ Furthermore, a study of PLWH who required invasive procedures found that wound infection rates were not associated with HIV status.¹¹¹ More recent data demonstrate that clinical outcomes, length of stay, and complications are similar between PLWH and HIV-negative patients for most surgical procedures.¹¹²

Recent studies have also shown that surgery for common malignancies (eg, anal cancer, prostate cancer, colorectal cancer) in PLWH are safe and effective.¹¹³⁻¹¹⁸ In particular, ample data suggest that surgical management in PLWH with early-stage anal cancer or recurrent anal cancer is safe and effective.¹¹³⁻¹¹⁵ For example, a retrospective review of 1725 U.S. patients with anal cancer (18% HIV-positive) who received an abdominoperineal resection (APR) saw no differences in mortality, length of hospital stay, or hospitalization costs based on HIV status.¹¹⁴ However, postoperative hemorrhage occurred more frequently in the HIV-infected group (5.1% vs. 1.5%; *P* = .05). Liver transplantation for hepatocellular carcinoma in the setting of HIV infection also appears to be feasible. A multicenter study in Italy compared the outcomes of liver transplantation in 30 PLWH and 125 HIV-negative patients with hepatocellular carcinoma.¹¹⁹ HIV status did not affect overall survival or cancer recurrence rates.

PLWH do not have special needs with respect to surgical precautions or pre- or postoperative laboratory testing. Overall health (eg, organ dysfunction, nutritional state) has been found to be a more reliable predictor of surgical outcome than CD4+ T-cell counts or HIV viral loads in PLWH. Data showing that low CD4+ T-cell counts are associated with poorer prognosis have been inconsistent, and viral suppression has not been conclusively shown to improve surgical outcomes.¹²⁰⁻¹²⁴

Overall, the panel recommends that HIV status alone should not be a criterion for decision-making regarding surgical interventions in patients with cancer, regardless of the procedure being considered.

Supportive Care During Cancer Therapy in PLWH

Patients with AIDS often suffer from fatigue, weight loss, pain, anorexia, and anxiety.¹²⁵ ART may cause side effects including nausea/vomiting, diarrhea, constipation, cough, dyspnea, insomnia, and depression.¹²⁵ Cancer and its treatment can also cause all of these symptoms.

For most supportive care situations related to cancer treatment, PLWH should be managed as per the appropriate NCCN Guidelines for Supportive Care (available at <u>www.NCCN.org</u>), including:

- NCCN Guidelines for Adult Cancer Pain
- NCCN Guidelines for Palliative Care
- NCCN Guidelines for Antiemesis
- NCCN Guidelines for Cancer-Related Fatigue
- NCCN Guidelines for Distress Management

In addition, recommendations for fertility preservation can be found in the NCCN Guidelines for Adolescent and Young Adult Oncology, and vaccination recommendations can be found in the NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections (both available at <u>www.NCCN.org</u>).

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

The panel notes some special considerations for PLWH who have cancer. For instance, general use of steroids for antiemesis should be limited in PLWH because steroids may increase the risk for opportunistic infections. However, when cancer treatment involves regimens that include agents associated with delayed nausea/vomiting, steroids can be used briefly following chemotherapy in PLWH.

In addition, the risk of infections in PLWH is increased during cancer treatment.^{54-58,61} Opportunistic infection prophylaxis thus plays a critical role in the supportive care of PLWH who have cancer (see *Opportunistic Infection Prophylaxis*, above).

Recommendations for Specific Cancers in PLWH

NHL in PLWH

NHL is an AIDS-defining cancer, and the risk of NHL is elevated 7- to 23-fold in PLWH, with the risk being even higher for certain subtypes such as primary CNS lymphoma.^{8,9,16,17} In the ART era, the incidence of NHL has declined.^{11,17} One study showed that the increased risk of NHL in PLWH compared with the general population declined from 28-fold in 1996 to 1999 to 8-fold in 2009 to 2012.¹⁷ In 2010, NHL accounted for about 21% of cancers diagnosed in PLWH.¹³

For recommendations regarding the management of NHL in PLWH, see the NCCN Guidelines for B-Cell Lymphomas (available at <u>www.NCCN.org</u>).

Kaposi Sarcoma in PLWH

AIDS-related Kaposi sarcoma is also an AIDS-defining cancer. The risk for Kaposi sarcoma in the setting of HIV has been as high as 3640-fold increased over the general population,^{8-10,16,126} but this risk has declined in the ART era.^{8,11,17,127} Still, estimates indicate that the risk of Kaposi sarcoma in PLWH between the years 2009 and 2012 was elevated

approximately 257-fold compared with the general U.S. population,¹⁷ and, in 2010, Kaposi sarcoma accounted for approximately 12% of cancers diagnosed in PLWH.¹³

Recommendations for the management of Kaposi sarcoma in PLWH are presented in the NCCN Guidelines for AIDS-Related Kaposi Sarcoma (available at <u>www.NCCN.org</u>).

Lung Cancer in PLWH

Lung cancer is the most common non-AIDS–defining cancer in PLWH.^{9,12} In the year 2010, lung cancer accounted for approximately 11% of cancers diagnosed in PLWH.¹³ The risk of lung cancer is about 2 to 5 times higher in PLWH than in HIV-negative individuals.^{9,10,17,128} Some data suggest that the incidence of lung cancer in PLWH has been declining since the beginning of the ART era,^{8,17} but other studies demonstrate an increase.¹²

Smoking is a well-known risk factor for lung cancer, and smoking prevalence is higher in PLWH than in HIV-negative individuals.^{19,22,129} Thus, smoking likely contributes to the increased risk of lung cancer in PLWH. However, immunosuppression also likely plays a role.^{3,130,131} Overall, PLWH who smoke and are on ART are 6 to 13 times more likely to die of lung cancer than of AIDS-related causes.¹³²

Screening for Lung Cancer in PLWH

Because of the increased risk for the development of lung cancer in PLWH, lung cancer screening has the potential to play an important role in early detection in this population. In the National Lung Screening Trial (NLST), annual low-dose helical chest CT screening in high-risk smokers was associated with a reduction in lung cancer-specific mortality.^{133,134} However, data informing the potential role of lung cancer screening in PLWH are limited.¹³⁵⁻¹³⁷ One study assessed annual CT-

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

based lung cancer screening (up to 4 scans) in 224 PLWH who were current and former smokers with a \geq 20 pack-year history.¹³⁵ Screening between 2006 and 2013 identified 1 case of lung cancer in 678 patientyears. Another study assessed a single CT scan to screen for lung cancer in 442 HIV-infected smokers with a \geq 20 pack-year history and a CD4+ T-cell nadir count of <350 cells/µl.¹³⁶ Lung cancer was diagnosed by the CT scan in 9 patients (2.0%; 95% CI, 0.9–3.8). Longer follow-up of these trials should be informative.

At this time, the panel recommends that screening for lung cancer should be performed in PLWH based on the same criteria used in the general population (see the NCCN Guidelines for Lung Cancer Screening, available at <u>www.NCCN.org</u>).

Workup for Lung Cancer in PLWH

The NCCN panel recommends that all patients with NSCLC should be tested for HIV if not already known to have a documented HIV infection. PLWH should be referred to an HIV specialist if they do not already have HIV care established (see *HIV Management During Cancer Therapy*, above).

Patients with NSCLC and HIV may be more likely to have benign lung nodules (see *Cancer Workup in PLWH*, above). Infectious granuloma or tuberculosis are possible differential diagnoses. An infectious disease workup should be performed for lesions in the lung, and treatment for other possible diagnoses (and potential complications) should be considered before biopsy. For example, if pulmonary Kaposi sarcoma is suspected, biopsies should be performed with bleeding risk in mind. Lung biopsies should be cultured for bacteria, fungi, and mycobacteria acid-fast bacilli (AFB). Non-malignant causes for lymphadenopathy should be considered in PLWH who have lung cancer. Similarly, workup of brain lesions in patients with NSCLC and advanced HIV-related immunosuppression should include an infectious disease evaluation to rule out infectious processes (eg, toxoplasmosis) and other malignancies such as NHL (also see *Cancer Workup in PLWH*, above).^{81,82} Treatment for possible non-malignant diagnoses can be considered before biopsy.

Additional workup for NSCLC in PLWH should be performed as described in the NCCN Guidelines for Non-Small Cell Lung Cancer (available at <u>www.NCCN.org</u>).

Management of Lung Cancer in PLWH

Some studies have shown that outcomes of PLWH and lung cancer are similar to those of HIV-negative patients with lung cancer.^{138,139} Other studies, however, have found disparities in receipt of cancer treatment and/or survival.^{140,141} For example, a registry-based analysis found that PLWH diagnosed with lung cancer between 1995 and 2009 were less likely to receive cancer treatment and had higher lung cancer-specific mortality.¹⁴¹ The effect of HIV on lung cancer-specific mortality was partially reduced in those who received cancer treatment. Furthermore, a single-center, retrospective cohort study that compared outcomes following resection in 22 PLWH who have lung cancer with outcomes following resection in 2430 patients with lung cancer and unknown HIV status from 1985 to 2009 showed that the PLWH group had more postoperative pulmonary and infectious complications (P = .001 and P < .001, respectively), faster disease progression (P = .061), and shorter survival (P = .001).¹⁴²

Overall, the NCCN panel recommends that PLWH should be treated for NSCLC as per the NCCN Guidelines for Non-Small Cell Lung Cancer (available online at <u>www.NCCN.org</u>). In those guidelines, performance

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

status is taken into consideration when making treatment decisions in patients with NSCLC. In patients with HIV and NSCLC, poor performance status may result from HIV, lung cancer, or other causes. The panel recommends that the reason for poor performance status should be considered when making treatment decisions. For example, if poor performance status is the result of cancer-related symptoms that may be reversed with cancer therapy, treatment initiation should be strongly considered. Similarly, treatment with ART may improve poor performance status related to HIV. As in other cancers, modifications to cancer therapy should not be made solely on the basis of HIV status.

As for all PLWH who smoke, smoking cessation should be offered to PLWH with lung cancer as indicated (see the NCCN Guidelines for Smoking Cessation, available at <u>www.NCCN.org</u> and see *Smoking Cessation in PLWH Who Have Cancer*, above).

Drug-drug interactions can occur in patients with NSCLC and HIV. When possible, an HIV pharmacist and an oncology pharmacist should be consulted. Also see *Principles of Drug-Drug Interactions* in the algorithm and *Drug-Drug Interactions: Systemic Cancer Therapy and ART*, above.

Anal Cancer in PLWH

Anal cancer in PLWH is often associated with persistent anal HPV infection, which is likely due to immune suppression.¹⁴³ Studies have shown that PLWH have an approximately 15- to 35-fold increased likelihood of being diagnosed with anal cancer compared with the general population.^{15-17,144} Analysis of the French Hospital Database on HIV also showed a highly elevated risk of anal cancer in PLWH, including in those who were on ART and whose CD4+ T-cell counts were high.¹⁴⁵ In this analysis, the standardized incidence ratios between PLWH and HIV-negative men who have sex with men (MSM) was 109.8

(95% CI, 84.6–140.3). Overall, anal cancer accounts for approximately 10% of cancers diagnosed in PLWH,¹³ and the current risk of anal cancer in PLWH is elevated approximately 15- to 19-fold over the general U.S. population.^{17,144}

Some evidence suggests that ART may be associated with a decrease in the incidence of high-grade anal intraepithelial neoplasia (AIN) and its progression to anal cancer.^{146,147} However, the incidence of anal cancer in PLWH has not decreased much, if at all, over time.^{10,17,144,145}

Screening for and Management of Precancerous Anal Lesions in *PLWH*

PLWH are at higher risk of anal squamous epithelial neoplasia (AIN) compared to HIV-negative patients.¹⁴⁸ High-grade AIN can be a precursor to anal cancer,¹⁴⁹⁻¹⁵² and treatment of high-grade AIN may prevent the development of anal cancer.¹⁵³ Therefore, many clinicians routinely screen PLWH for anal dysplasia, even though randomized controlled trials showing that such screening programs are efficacious at reducing anal cancer incidence and mortality are lacking.¹⁵⁴⁻¹⁶¹ Screening methods include anal cytology, high resolution anoscopy, and annual digital anal exam.

Multiple methods are used to treat anal dysplasia, including topical therapy (fluorouracil, imiquimod), excision, and ablation.^{159,162-164} These treatments are safe in PLWH and offer short-term efficacy.¹⁶⁵⁻¹⁶⁷ However, treatment of anal dysplasia in PLWH is associated with a higher risk of recurrence compared to HIV-negative patients.^{154,165} In a randomized controlled trial of HIV-positive MSM, electrocautery (ablation) was found to be better than topical therapy in the treatment of anal dysplasia, even though recurrence rates were still high.¹⁶⁸ The subgroup with perianal AIN appeared to respond better to imiquimod than those with intra-anal AIN.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

The large, ongoing, randomized phase III ANCHOR trial is comparing topical or ablative treatment with active monitoring in PLWH with high-grade AIN. The primary outcome measure is time to development of anal cancer, and the study is estimated to be completed in the year 2022 (clinicaltrials.gov NCT02135419).

Workup for Anal Cancer in PLWH

The NCCN panel recommends that all patients with anal cancer should be tested for HIV if not already known to have a documented HIV infection. Viral load and CD4+ T-cell counts should be determined in PLWH who have anal cancer. Low CD4+ T-cell counts prior to anal cancer treatment have been shown to be associated with an increased risk for acute hematologic toxicity.^{169,170} PLWH with anal cancer should be referred to an HIV specialist if HIV care has not yet been established (see *HIV Management During Cancer Therapy*, above).

Additional workup for anal cancer in PLWH should be performed as described in the NCCN Guidelines for Anal Carcinoma (available at <u>www.NCCN.org</u>). HPV-related disease in PLWH is often multifocal. Therefore, women living with HIV (WLWH) diagnosed with anal cancer should have colposcopic examination by a gynecologist to evaluate for the presence of vulvar, vaginal, or cervical disease.

Management of Anal Cancer in PLWH

Most evidence regarding outcomes in PLWH with anal cancer comes from retrospective comparisons, a few of which found worse outcomes in PLWH.^{171,172} Most studies, however, have found outcomes to be similar in PLWH and HIV-negative patients.^{107,108,113,114,170,173-175} For example, in a retrospective cohort study of 1184 veterans diagnosed with squamous cell carcinoma of the anus between 1998 and 2004 (15% of whom tested positive for HIV), no differences with respect to receipt of treatment or 2-year survival rates were observed for PLWH compared with HIV-negative patients.¹⁰⁷ Furthermore, a populationbased study of almost 2 million patients with cancer, 6459 of whom were infected with HIV, found no increase in cancer-specific mortality for anal cancer in PLWH.²⁶ Recent phase II studies in anal cancer have included PLWH.^{176,177} Although the numbers of PLWH in these trials have been small, the efficacy and safety results appear similar regardless of HIV status.

Based on these data, the NCCN panel recommends that PLWH should be treated for anal cancer as per the NCCN Guidelines for Anal Carcinoma (available online at <u>www.NCCN.org</u>), and that modifications to cancer treatment should not be made solely on the basis of HIV status. Additional considerations for PLWH who have anal cancer are outlined in these guidelines, above, and include normal tissue-sparing radiation techniques, such as IMRT. In addition, non-malignant causes for lymphadenopathy should be considered in PLWH, with referral for an infectious disease workup if suspicious/PET-avid nodes are seen (also see *Cancer Workup in PLWH*, above). Poor performance status in PLWH and anal cancer may be from HIV, cancer, or other causes. The reason for poor performance status should be considered when making treatment decisions. Treatment with ART may improve poor performance status related to HIV.

The phase II AIDS Malignancy Consortium 045 (AMC045) trial evaluated the safety and efficacy of cetuximab with cisplatin/5-FU and radiation in PLWH with anal squamous cell carcinoma. Preliminary results from this trial and a similar trial in immunocompetent patients (ECOG 3205), reported in 2012, were encouraging with acceptable toxicity and 2-year progression-free survival (PFS) rates of 92% (95% CI, 81%–100%) and 80% (95% CI, 61%–90%) in the immunocompetent and PLWH populations, respectively.¹⁷⁸ Longer-term results from E3205 and AMC045 were published in 2017. In a post hoc analysis of E3205,

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

the 3-year locoregional failure rate was 21% (95% CI, 7%–26%).¹⁷⁹ The toxicities associated with the regimen in ECOG 3205 (immunocompetent patients) were substantial, with grade-4 toxicity occurring in 32% of the study population and 3 treatment-associated deaths (5%). In AMC045 (PLWH), the 3-year locoregional failure rate was 20% (95% CI, 10%–37%) by Kaplan-Meier estimate.¹⁸⁰ Grade 4 toxicity and treatment-associated rates were similar to that seen in E3205, at 26% and 4%, respectively. The addition of cetuximab to standard chemoradiation is therefore not recommended in PLWH or HIV-negative patients with anal cancer at this time.

Surveillance and Survivorship in PLWH Treated for Anal Cancer Surveillance following treatment of anal cancer in PLWH should be performed as described in the NCCN Guidelines for Anal Carcinoma (available at <u>www.NCCN.org</u>), except with more frequent anoscopy for PLWH (every 3–6 months for 3 years). A small retrospective study of 93 patients with anal cancer found that recurrence rates were not affected by HIV status.¹⁷⁵ However, a nationwide retrospective cohort study of 142 HIV-positive veterans with stage I-III anal cancer found that those with lower post-treatment CD4+ T-cell counts had an increased risk for cancer recurrence.¹⁶⁹

Regular anal cytology can also be considered for the detection of anal dysplasia in survivors of anal cancer living with HIV, although data informing its value in detection of recurrent anal cancer are lacking. If high-grade AIN is identified, then high-resolution anoscopy should be performed if available.

PLWH diagnosed with anal cancer should be counseled on infertility risks and referred for fertility counseling as appropriate. PLWH who engage in receptive anal intercourse should discuss post-treatment pelvic physical therapy and anal dilators with an appropriate health care provider.

Hodgkin Lymphoma in PLWH

PLWH are 5 to 14 times more likely to be diagnosed with Hodgkin lymphoma than uninfected individuals.^{9,10,16,17} The incidence of Hodgkin lymphoma in PLWH increased through 2002,^{8,9} but studies that assessed the trends of incidence from 1996 through 2010 or 2012 found it to be decreasing.^{11,17} Evidence regarding the role of immunosuppression in the development of lymphoma are conflicting.^{3,16,181,182}

Hodgkin lymphoma is classified into nodular-lymphocyte-predominant Hodgkin lymphoma and classical Hodgkin lymphoma. Only classical Hodgkin lymphoma has been linked to HIV infection. Classical Hodgkin lymphoma is further subclassified as nodular sclerosis, lymphocyte-rich, mixed cellularity, and lymphocyte-depleted.¹⁸³ PLWH who develop Hodgkin lymphoma typically present with mixed cellularity or, less commonly, nodular sclerosis or lymphocyte-depleted histologies of classical disease.¹⁸⁴⁻¹⁸⁸

In contrast to patients without HIV, nearly 90% of cases of Hodgkin lymphoma in PLWH are EBV-associated.^{183,189} PLWH often present with more advanced disease, including extranodal disease and bone marrow involvement.^{184,185,189,190} Bone-marrow-only presentations sometimes occur,¹⁹¹ whereas central nervous system involvement is rare.¹⁹² PLWH with Hodgkin lymphoma have also been shown to present with more aggressive disease and worse performance status. However, they have similar response rates and short-term survival as their HIV-negative counterparts when they receive standard cancer treatment.^{185,193,194}

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

Workup for Hodgkin Lymphoma in PLWH

Approximately 4% of 22,355 patients with Hodgkin lymphoma in the SEER database from 2000 to 2010 were infected with HIV at the time of diagnosis.¹⁹⁵ The NCCN panel recommends that all patients with Hodgkin lymphoma be tested for HIV if not already known to have a documented HIV infection. PLWH should be referred to an HIV specialist (see *HIV Management During Cancer Therapy*, above). Use of effective ART has been associated with increased cancer-specific survival and overall survival in PLWH with Hodgkin lymphoma.^{46,196}

Diagnosis and staging workup for Hodgkin lymphoma in PLWH should be performed as described in the NCCN Guidelines for Hodgkin Lymphoma (available at <u>www.NCCN.org</u>). However, it should be noted that both opportunistic infection and HIV itself can lead to FDG-avid lymphadenopathy and organ lesions (see *Cancer Workup in PLWH*, above). Non-malignant causes for lymphadenopathy and organ lesions should be considered, with referral for an infectious disease evaluation as indicated.

Management of Hodgkin Lymphoma in PLWH

Cancer mortality can be similar between PLWH and HIV-negative patients with Hodgkin lymphoma.^{26,28,185} However, disparities in treatment received results in increased mortality in PLWH whose cancer is not treated.^{32,33,197} In a population-based study of 2090 PLWH, unadjusted 5-year overall survival was decreased in PLWH (66% vs. 80% for HIV-negative patients), whereas the difference disappeared in those who received chemotherapy.¹⁹⁷ One large database study, however, found that overall survival was decreased in PLWH who have Hodgkin lymphoma (HR, 1.47; 95% CI, 1.25–1.74), even though the population was matched by treatment characteristics.¹⁹⁸ Cancer-specific survival was not assessed in this study.

Treatment with doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) has been shown to be safe and effective in PLWH who have Hodgkin lymphoma, with oncologic outcomes similar to HIV-negative patients.^{185,187,190,194} Good results have also been seen with Stanford V (doxorubicin, vinblastine, mechlorethamine, vincristine, bleomycin, etoposide, and prednisone).¹⁹⁹ BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone) is also active but associated with more toxicity and treatment-related mortality than Stanford V and ABVD.^{200,201}

When using these regimens, ART with overlapping toxicities or direct interactions with chemotherapy should be avoided (see *Drug-Drug Interactions: Systemic Cancer Therapy and ART*, above). Drug-drug interactions are common in patients with Hodgkin lymphoma and HIV. For example, a clinically significant interaction between vinblastine and antivirals ritonavir and lopinavir has been associated with neurotoxicity.²⁰² Similarly, vinblastine and ritonavir may be associated with hematologic toxicity.²⁰² When possible, an HIV pharmacist and an oncology pharmacist should be consulted regarding chemotherapy in PLWH who have Hodgkin lymphoma. Also see Principles of Drug-Drug Interactions in these guidelines and *Drug-Drug Interactions: Systemic Cancer Therapy and ART*, above.

Autologous stem cell transplantation also appears to be safe and effective in PLWH who have recurrent/relapsed Hodgkin lymphoma. The AIDS Malignancy Consortium study 020 found that dose-reduced high-dose busulfan, cyclophosphamide, and autologous stem cell transplantation were effective and well tolerated in a selected group of PLWH with Hodgkin lymphoma.²⁰³ In addition, a retrospective matched cohort analysis showed that relapse, overall survival, and PFS were similar between PLWH and HIV-negative patients with Hodgkin lymphoma who received autologous stem cell transplantation.¹⁸⁶ A

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

retrospective, multicenter, registry-based study in Europe also found autologous stem cell transplantation to be a beneficial option in this population.²⁰⁴ Most recently, autologous transplant was established as a standard of care for PLWH who have Hodgkin lymphoma in a study run jointly by the AMC and Blood and Marrow Transplant Clinical Trials Network that included 15 patients with Hodgkin lymphoma and 25 patients with diffuse large B-cell lymphoma.²⁰⁵

Limited experience with PET/CT-guided therapy, based on interim or final post-treatment restaging in HIV-associated Hodgkin lymphoma, indicates that it is feasible, despite potential confounding factors (ie, non-malignant causes for PET-avid regions).^{206,207}

Based on these data, the NCCN panel recommends that PLWH should be treated for Hodgkin lymphoma as per the NCCN Guidelines for Hodgkin Lymphoma (available online at www.NCCN.org), and that modifications to cancer treatment should not be made solely on the basis of HIV status. Poor performance status in PLWH who have Hodgkin lymphoma may be from HIV, cancer, or other causes. The reason for poor performance status should be considered when making treatment decisions. Treatment with ART may improve poor performance status related to HIV. ABVD is less toxic than Stanford V or BEACOPP and therefore may be preferred in patients with HIV. Extrapolating from randomized data in the general Hodgkin lymphoma population, bleomycin can be discontinued after 2 cycles in PLWH who have advanced-stage Hodgkin lymphoma and a PET/CT scan showing response.²⁰⁸ It is also reasonable to discontinue bleomycin in patients who have symptoms of pulmonary compromise or fall in diffusing capacity of the lungs (DLCO). Whereas the routine use of growth factors is not recommended during ABVD treatment because of concerns about possible adverse interactions/lung toxicity with bleomycin in the NCCN Guidelines for Hodgkin Lymphoma (available at <u>www.NCCN.org</u>), growth factors may be required in PLWH especially if CD4+ T-cell counts are low and in the setting of prolonged severe neutropenia or neutropenic fever. Similarly, whereas dose reduction is not recommended for neutropenia with ABVD in the NCCN Guidelines for Hodgkin Lymphoma (available at <u>www.NCCN.org</u>), dose reductions may be appropriate in PLWH. Prophylactic antibiotics and dose reduction in early cycles can be considered in patients with low CD4+ Tcell counts.

B symptoms, which include fever, drenching night sweats, and/or weight loss of >10% body weight, are common in PLWH who have Hodgkin lymphoma.²⁰⁹ B symptoms may also indicate a concurrent opportunistic infection if CD4 counts are low.

Cervical Cancer in PLWH

Persistent infection with high-risk HPV, the etiologic agent of cervical cancer, is more likely in women living with HIV (WLWH) than HIV-negative women,²¹⁰⁻²¹² and the incidence of cervical cancer in WLWH is about 3 to 5 times higher than that in HIV-negative women.^{8,9,16,213,214} Some evidence suggests that ART lowers the risk of persistent HPV infection and the prevalence of cervical intraepithelial neoplasia (CIN), precursors of cervical cancer.²¹⁵⁻²¹⁸ However, evidence that the incidence of cervical cancer in WLWH has decreased significantly in the modern ART era is lacking.^{8,10,12,17,127,219} In the year 2010, cervical cancer accounted for about 1% of cancers diagnosed in the HIV population.¹³ This number is likely so low only because the U.S. HIV population is mostly male. Cervical cancer is a major health problem in developing countries struggling with high HIV and HPV prevalence.

Management of Precancerous Cervical Lesions in PLWH

Treatment options for CIN include cryotherapy, loop electrosurgical excision procedure, and cold knife conization.²²⁰ These options are

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

generally safe and effective for WLWH.²²¹⁻²²⁶ However, endocervical extension is more frequent among WLWH.²²⁷ Therefore, loop excision is less effective and recurrence rates are higher in WLWH than in HIV-negative patients.²²⁷⁻²³⁰

Workup for Cervical Cancer in PLWH

The NCCN panel recommends all patients with cervical cancer be tested for HIV if not already known to have a documented HIV infection. As in all cancers, PLWH should be referred to an HIV specialist (see *HIV Management During Cancer Therapy*, above).

Additional workup for cervical cancer in WLWH should be performed as described in the NCCN Guidelines for Cervical Cancer (available at <u>www.NCCN.org</u>). In addition, WLWH with CIN or invasive cervical cancer should also be evaluated for field effects of HPV oncogenesis, namely anal and vulvar cancer.

Management of Cervical Cancer in PLWH

A systematic review published in 2015 identified only 8 studies (3 prospective and 5 retrospective) addressing the management of cervical cancer in PLWH.²³¹ Hematopoietic grade 1 and 2 toxicity rates were higher in PLWH than in HIV-negative patients. Grade 3 and 4 events that differed by HIV status were anemia (4% in WLWH vs. 2%) and gastrointestinal reactions (5% in WLWH vs. 2%). This systematic review also found that WLWH who started ART early were more likely to complete cancer treatment. Additional data following the 2015 systematic review also suggest that WLWH who have cervical cancer are more likely to experience hematologic toxicity and less likely to complete a full course of chemotherapy than HIV-negative patients.²³²

A prospective cohort study of 348 patients with cervical cancer in Botswana compared outcomes between the 66% who were infected with HIV and those who were not.³¹ The WLWH had median CD4+ Tcell count of 397 cells/µL (interquartile range, 264–555). Following an adjusted analysis, HIV infection was significantly associated with an increased risk of death among all women (HR, 1.95; 95% CI, 1.20–3.17) and among the subset of those who received guideline-concordant curative therapy (HR, 2.63; 95% CI, 1.05–6.55). These results suggest that HIV infection has an adverse effect on cervical cancer survival. That this effect was greater for women with a lower CD4+ T-cell count (P = .036) suggests that immune suppression plays a significant role. Of note, the study was conducted in a resource-limited environment, and survival of both PLWH and HIV-negative patients with cervical cancer was lower than would be expected in the United States.

Based on these limited data, the NCCN panel recommends that WLWH be treated for cervical cancer as per the NCCN Guidelines for Cervical Cancer (available online at <u>www.NCCN.org</u>), and that modifications to cancer treatment should not be made solely on the basis of HIV status. The NCCN panel also notes that non-malignant causes for lymphadenopathy should be considered in PLWH who have cervical cancer, with referral for an infectious disease workup if suspicious/PETavid nodes are seen (also see *Cancer Workup in PLWH*, above). Poor performance status in WLWH who have cervical cancer may be from HIV, cancer, or other causes. The reason for poor performance status should be considered when making treatment decisions. Treatment with ART may improve poor performance status related to HIV.

Summary

Cancer treatment is generally as safe and effective for PLWH as it is for patients who are HIV-negative, and the NCCN panel recommends that most PLWH who develop cancer should be offered the same cancer therapies as HIV-negative individuals. Modifications to cancer treatment

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

should not be made solely on the basis of HIV status. However, PLWH who have cancer require special considerations, including the possible need to modify ART or cancer therapy based on the potential for DDIs, the need for an infectious disease workup for possible non-malignant imaging findings, and the need for more intensive monitoring for toxicities. Furthermore, performance status is taken into consideration when making treatment decisions in patients with cancer. In patients with HIV and cancer, poor performance status may result from HIV, cancer, or other causes. The panel recommends that the reason for poor performance status should be considered when making treatment decisions and notes that treatment with ART may improve poor performance status related to HIV. The panel strongly recommends that an HIV specialist be involved in comanagement of PLWH during cancer treatment.

Unfortunately, data on the treatment of PLWH who have cancer are relatively limited. Increased accrual of this population to clinical trials should be a goal of the oncology community. Based on recommendations from the ASCO and Friends of Cancer Research HIV Working Group, PLWH should not be excluded from most cancer clinical trials if they meet specified criteria.²³³ Clinicians who work with PLWH who have cancer should encourage participation in clinical trials (see <u>www.clinicaltrials.gov</u>).

As more evidence becomes available, the panel will update these guidelines accordingly.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

References

1. U.S. Statistics. HIV.gov; 2017. Available at: <u>https://www.hiv.gov/hiv-basics/overview/data-and-trends/statistics</u>. Accessed August 16, 2017.

2. Goedert JJ, Cote TR, Virgo P, et al. Spectrum of AIDS-associated malignant disorders. Lancet 1998;351:1833-1839. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/9652666</u>.

3. Frisch M, Biggar RJ, Engels EA, et al. Association of cancer with AIDS-related immunosuppression in adults. JAMA 2001;285:1736-1745. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/11277828</u>.

4. Antiretroviral Therapy Cohort Collaboration. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. Lancet HIV 2017;4:e349-e356. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28501495</u>.

5. Detels R, Munoz A, McFarlane G, et al. Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration. Multicenter AIDS Cohort Study Investigators. JAMA 1998;280:1497-1503. Available at: https://www.ncbi.nlm.nih.gov/pubmed/9809730.

6. Palella FJ, Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998;338:853-860. Available at: https://www.pcbi.plm.pib.gov/pubmod/9516219

https://www.ncbi.nlm.nih.gov/pubmed/9516219.

7. Cobucci RN, Lima PH, de Souza PC, et al. Assessing the impact of HAART on the incidence of defining and non-defining AIDS cancers among patients with HIV/AIDS: a systematic review. J Infect Public Health 2015;8:1-10. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25294086.

8. Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980-2002. AIDS

2006;20:1645-1654. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16868446.

9. Engels EA, Biggar RJ, Hall HI, et al. Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer 2008;123:187-194. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18435450.

10. Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992-2003. Ann Intern Med 2008;148:728-736. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/18490686</u>.

11. Robbins HA, Shiels MS, Pfeiffer RM, Engels EA. Epidemiologic contributions to recent cancer trends among HIV-infected people in the United States. AIDS 2014;28:881-890. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24300545</u>.

12. Shiels MS, Pfeiffer RM, Gail MH, et al. Cancer burden in the HIVinfected population in the United States. J Natl Cancer Inst 2011;103:753-762. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/21483021</u>.

13. Robbins HA, Pfeiffer RM, Shiels MS, et al. Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst 2015;107. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25663691</u>.

14. Angeletti PC, Zhang L, Wood C. The viral etiology of AIDSassociated malignancies. Adv Pharmacol 2008;56:509-557. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/18086422</u>.

15. Chaturvedi AK, Madeleine MM, Biggar RJ, Engels EA. Risk of human papillomavirus-associated cancers among persons with AIDS. J Natl Cancer Inst 2009;101:1120-1130. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/19648510</u>.

16. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

transplant recipients: a meta-analysis. Lancet 2007;370:59-67. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17617273</u>.

17. Hernandez-Ramirez RU, Shiels MS, Dubrow R, Engels EA. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV 2017;4:e495-e504. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28803888</u>.

18. Meijide H, Pertega S, Rodriguez-Osorio I, et al. Increased incidence of cancer observed in HIV/HCV-coinfected patients versus HIV-monoinfected, 1993-2014. AIDS 2017. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28328796.

19. Tesoriero JM, Gieryic SM, Carrascal A, Lavigne HE. Smoking among HIV positive New Yorkers: prevalence, frequency, and opportunities for cessation. AIDS Behav 2010;14:824-835. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/18777131</u>.

20. Helleberg M, Afzal S, Kronborg G, et al. Mortality attributable to smoking among HIV-1-infected individuals: a nationwide, population-based cohort study. Clin Infect Dis 2013;56:727-734. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23254417.

21. McGinnis KA, Fultz SL, Skanderson M, et al. Hepatocellular carcinoma and non-Hodgkin's lymphoma: the roles of HIV, hepatitis C infection, and alcohol abuse. J Clin Oncol 2006;24:5005-5009. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17075119</u>.

22. Park LS, Hernandez-Ramirez RU, Silverberg MJ, et al. Prevalence of non-HIV cancer risk factors in persons living with HIV/AIDS: a metaanalysis. AIDS 2016;30:273-291. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/26691548</u>.

23. Rentsch C, Tate JP, Akgun KM, et al. Alcohol-related diagnoses and all-cause hospitalization among HIV-infected and uninfected patients: a longitudinal analysis of United States veterans from 1997 to 2011. AIDS Behav 2016;20:555-564. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25711299. 24. U.S. National Library of Medicine-Key MEDLINE® Indicators. Available at: <u>http://www.nlm.nih.gov/bsd/bsd_key.html</u>. Accessed August 15, 2017.

25. Biggar RJ, Engels EA, Ly S, et al. Survival after cancer diagnosis in persons with AIDS. J Acquir Immune Defic Syndr 2005;39:293-299. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/15980688</u>.

26. Coghill AE, Shiels MS, Suneja G, Engels EA. Elevated cancerspecific mortality among HIV-infected patients in the United States. J Clin Oncol 2015;33:2376-2383. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/26077242</u>.

27. Coghill AE, Pfeiffer RM, Shiels MS, Engels EA. Excess mortality among HIV-infected individuals with cancer in the United States. Cancer Epidemiol Biomarkers Prev 2017;26:1027-1033. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28619832.

28. Marcus JL, Chao C, Leyden WA, et al. Survival among HIV-infected and HIV-uninfected individuals with common non-AIDS-defining cancers. Cancer Epidemiol Biomarkers Prev 2015;24:1167-1173. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25713023</u>.

29. Brock MV, Hooker CM, Engels EA, et al. Delayed diagnosis and elevated mortality in an urban population with HIV and lung cancer: implications for patient care. J Acquir Immune Defic Syndr 2006;43:47-55. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/16936558</u>.

30. Ferreira MP, Coghill AE, Chaves CB, et al. Outcomes of cervical cancer among HIV-infected and HIV-uninfected women treated at the Brazilian National Institute of Cancer. AIDS 2017;31:523-531. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28060014</u>.

31. Dryden-Peterson S, Bvochora-Nsingo M, Suneja G, et al. HIV infection and survival among women with cervical cancer. J Clin Oncol 2016. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27573661</u>.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

32. Suneja G, Lin CC, Simard EP, et al. Disparities in cancer treatment among patients infected with the human immunodeficiency virus. Cancer 2016;122:2399-2407. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27187086.

33. Suneja G, Shiels MS, Angulo R, et al. Cancer treatment disparities in HIV-infected individuals in the United States. J Clin Oncol 2014;32:2344-2350. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24982448.

34. Suneja G, Boyer M, Yehia BR, et al. Cancer treatment in patients with HIV infection and non-AIDS-defining cancers: a survey of US oncologists. J Oncol Pract 2015;11:e380-387. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25873060</u>.

35. Marks G, Crepaz N, Senterfitt JW, Janssen RS. Meta-analysis of high-risk sexual behavior in persons aware and unaware they are infected with HIV in the United States: implications for HIV prevention programs. J Acquir Immune Defic Syndr 2005;39:446-453. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16010168.

36. Branson BM, Handsfield HH, Lampe MA, et al. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm Rep 2006;55:1-17; quiz CE11-14. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/16988643.

37. Chiao EY, Dezube BJ, Krown SE, et al. Time for oncologists to opt in for routine opt-out HIV testing? JAMA 2010;304:334-339. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/20639567</u>.

38. Hwang JP, Granwehr BP, Torres HA, et al. HIV testing in patients with cancer at the initiation of therapy at a large US comprehensive cancer center. J Oncol Pract 2015;11:384-390. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/26243649</u>.

39. Li J, Thompson TD, Tai E, et al. Testing for human immunodeficiency virus among cancer survivors under age 65 in the

United States. Prev Chronic Dis 2014;11:E200. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25393748</u>.

40. HIV Care Continuum. HIV.gov; 2017. Available at: <u>https://www.hiv.gov/federal-response/policies-issues/hiv-aids-care-continuum</u>. Accessed August 16, 2017.

41. Flash CA, Pasalar S, Hemmige V, et al. Benefits of a routine opt-out HIV testing and linkage to care program for previously diagnosed patients in publicly funded emergency departments in Houston, TX. J Acquir Immune Defic Syndr 2015;69 Suppl 1:S8-15. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25867782.

42. Irvine MK, Chamberlin SA, Robbins RS, et al. Improvements in HIV care engagement and viral load suppression following enrollment in a comprehensive HIV care coordination program. Clin Infect Dis 2015;60:298-310. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25301208.

43. Kitahata MM, Gange SJ, Abraham AG, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 2009;360:1815-1826. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19339714.

44. Silverberg MJ, Neuhaus J, Bower M, et al. Risk of cancers during interrupted antiretroviral therapy in the SMART study. AIDS 2007;21:1957-1963. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17721103.

45. El-Sadr WM, Lundgren J, Neaton JD, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 2006;355:2283-2296. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17135583</u>.

46. Hessol NA, Pipkin S, Schwarcz S, et al. The impact of highly active antiretroviral therapy on non-AIDS-defining cancers among adults with AIDS. Am J Epidemiol 2007;165:1143-1153. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17344204</u>.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

47. Gerard L, Galicier L, Maillard A, et al. Systemic non-Hodgkin lymphoma in HIV-infected patients with effective suppression of HIV replication: persistent occurrence but improved survival. J Acquir Immune Defic Syndr 2002;30:478-484. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12154338.

48. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. AIDSinfo; 2016. Available at: <u>https://aidsinfo.nih.gov/contentfiles/lvguidelines/adultandadolescentgl.p</u> <u>df</u>. Accessed August 16, 2017.

49. Torres HA, Mulanovich V. Management of HIV infection in patients with cancer receiving chemotherapy. Clin Infect Dis 2014;59:106-114. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24642555</u>.

50. Buchacz K, Baker RK, Palella FJ, Jr., et al. AIDS-defining opportunistic illnesses in US patients, 1994-2007: a cohort study. AIDS 2010;24:1549-1559. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/20502317.

51. Ledergerber B, Egger M, Erard V, et al. AIDS-related opportunistic illnesses occurring after initiation of potent antiretroviral therapy: the Swiss HIV Cohort Study. JAMA 1999;282:2220-2226. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/10605973</u>.

52. Schwarcz L, Chen MJ, Vittinghoff E, et al. Declining incidence of AIDS-defining opportunistic illnesses: results from 16 years of population-based AIDS surveillance. AIDS 2013;27:597-605. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23079812</u>.

53. Djawe K, Buchacz K, Hsu L, et al. Mortality risk after AIDS-defining opportunistic illness among HIV-infected persons--San Francisco, 1981-2012. J Infect Dis 2015;212:1366-1375. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26044289.

54. Borg C, Ray-Coquard I, Philip I, et al. CD4 lymphopenia as a risk factor for febrile neutropenia and early death after cytotoxic

chemotherapy in adult patients with cancer. Cancer 2004;101:2675-2680. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/15503313</u>.

55. Dale DC, McCarter GC, Crawford J, Lyman GH. Myelotoxicity and dose intensity of chemotherapy: reporting practices from randomized clinical trials. J Natl Compr Canc Netw 2003;1:440-454. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/19761076</u>.

56. Seropian S, Nadkarni R, Jillella AP, et al. Neutropenic infections in 100 patients with non-Hodgkin's lymphoma or Hodgkin's disease treated with high-dose BEAM chemotherapy and peripheral blood progenitor cell transplant: out-patient treatment is a viable option. Bone Marrow Transplant 1999;23:599-605. Available at: https://www.ncbi.nlm.nih.gov/pubmed/10217191.

57. Savage DG, Lindenbaum J, Garrett TJ. Biphasic pattern of bacterial infection in multiple myeloma. Ann Intern Med 1982;96:47-50. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/6976144</u>.

58. Griffiths H, Lea J, Bunch C, et al. Predictors of infection in chronic lymphocytic leukaemia (CLL). Clin Exp Immunol 1992;89:374-377. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/1516254</u>.

59. Bodey GP, Buckley M, Sathe YS, Freireich EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 1966;64:328-340. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/5216294</u>.

60. Schimpff SC. Empiric antibiotic therapy for granulocytopenic cancer patients. Am J Med 1986;80:13-20. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/3521270</u>.

61. Morrison VA. Immunosuppression associated with novel chemotherapy agents and monoclonal antibodies. Clin Infect Dis 2014;59 Suppl 5:S360-364. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25352632.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

62. Ngidi S, Magula N, Sartorius B, et al. Incidence of chemotherapyinduced neutropenia in HIV-infected and uninfected patients with breast cancer receiving neoadjuvant chemotherapy. S Afr Med J 2017;107:595-601. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29025449.

63. Park J, Kim TM, Hwang JH, et al. Risk factors for febrile neutropenia during chemotherapy for HIV-related lymphoma. J Korean Med Sci 2012;27:1468-1471. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/23255844.

64. Sparano JA, Hu X, Wiernik PH, et al. Opportunistic infection and immunologic function in patients with human immunodeficiency virus-associated non-Hodgkin's lymphoma treated with chemotherapy. J Natl Cancer Inst 1997;89:301-307. Available at: https://www.ncbi.nlm.nih.gov/pubmed/9048834.

65. Wang ES, Straus DJ, Teruya-Feldstein J, et al. Intensive chemotherapy with cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine (CODOX-M/IVAC) for human immunodeficiency virus-associated Burkitt lymphoma. Cancer 2003;98:1196-1205. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12973843.

66. Baser S, Shannon VR, Eapen GA, et al. Smoking cessation after diagnosis of lung cancer is associated with a beneficial effect on performance status. Chest 2006;130:1784-1790. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17166997.

67. Parsons A, Daley A, Begh R, Aveyard P. Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis. BMJ 2010;340:b5569. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/20093278.

68. Mason DP, Subramanian S, Nowicki ER, et al. Impact of smoking cessation before resection of lung cancer: a Society of Thoracic Surgeons General Thoracic Surgery Database study. Ann Thorac Surg

2009;88:362-370; discussion 370-361. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19632374.

69. Khuri FR, Kim ES, Lee JJ, et al. The impact of smoking status, disease stage, and index tumor site on second primary tumor incidence and tumor recurrence in the head and neck retinoid chemoprevention trial. Cancer Epidemiol Biomarkers Prev 2001;10:823-829. Available at: https://www.ncbi.nlm.nih.gov/pubmed/11489748.

70. Roach MC, Rehman S, DeWees TA, et al. It's never too late: smoking cessation after stereotactic body radiation therapy for nonsmall cell lung carcinoma improves overall survival. Pract Radiat Oncol 2016;6:12-18. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/26598909.

71. Dobson Amato KA, Hyland A, Reed R, et al. Tobacco cessation may improve lung cancer patient survival. J Thorac Oncol 2015;10:1014-1019. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26102442.

72. Richardson GE, Tucker MA, Venzon DJ, et al. Smoking cessation after successful treatment of small-cell lung cancer is associated with fewer smoking-related second primary cancers. Ann Intern Med 1993;119:383-390. Available at: https://www.ncbi.nlm.nih.gov/pubmed/8393311.

73. Kuri M, Nakagawa M, Tanaka H, et al. Determination of the duration of preoperative smoking cessation to improve wound healing after head and neck surgery. Anesthesiology 2005;102:892-896. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15851873.

74. Davison JM, Subramaniam RM, Surasi DS, et al. FDG PET/CT in patients with HIV. AJR Am J Roentgenol 2011;197:284-294. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/21785073</u>.

75. Goodman PC. Radiographic Assessment of HIV-Associated Diseases. HIV InSite 2006. Available at: <u>http://hivinsite.ucsf.edu/InSite?page=kb-04-01-16#S1X</u>.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

76. Scharko AM, Perlman SB, Pyzalski RW, et al. Whole-body positron emission tomography in patients with HIV-1 infection. Lancet 2003;362:959-961. Available at: https://www.ncbi.nlm.nih.gov/pubmed/14511930.

77. Brust D, Polis M, Davey R, et al. Fluorodeoxyglucose imaging in healthy subjects with HIV infection: impact of disease stage and therapy on pattern of nodal activation. AIDS 2006;20:985-993. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/16603850</u>.

78. Goshen E, Davidson T, Avigdor A, et al. PET/CT in the evaluation of lymphoma in patients with HIV-1 with suppressed viral loads. Clin Nucl Med 2008;33:610-614. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18716509.

79. Allen CM, Al-Jahdali HH, Irion KL, et al. Imaging lung manifestations of HIV/AIDS. Ann Thorac Med 2010;5:201-216. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/20981180</u>.

80. Gingo MR, Morris A. Pathogenesis of HIV and the lung. Curr HIV/AIDS Rep 2013;10:42-50. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23079728</u>.

81. Langford TD, Letendre SL, Larrea GJ, Masliah E. Changing patterns in the neuropathogenesis of HIV during the HAART era. Brain Pathol 2003;13:195-210. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/12744473.

82. Gottumukkala RV, Romero JM, Riascos RF, et al. Imaging of the brain in patients with human immunodeficiency virus infection. Top Magn Reson Imaging 2014;23:275-291. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25296273</u>.

83. Sathekge M, Maes A, Van de Wiele C. FDG-PET imaging in HIV infection and tuberculosis. Semin Nucl Med 2013;43:349-366. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23905617</u>.

84. Restrepo CS, Lemos DF, Gordillo H, et al. Imaging findings in musculoskeletal complications of AIDS. Radiographics 2004;24:1029-1049. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/15256627</u>.

85. Mangioni D, Bandera A, Muscatello A, et al. Focal bone lesions in HIV-positive patient treated with tenofovir. BMC Infect Dis 2014;14:131. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24602357</u>.

86. Yee J, Wall SD. Gastrointestinal manifestations of AIDS. Gastroenterol Clin North Am 1995;24:413-434. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/7642250</u>.

87. Lefkowitch JH. Pathology of AIDS-related liver disease. Dig Dis 1994;12:321-330. Available at: https://www.ncbi.nlm.nih.gov/pubmed/7712615.

88. Sparano JA, Wiernik PH, Hu X, et al. Saquinavir enhances the mucosal toxicity of infusional cyclophosphamide, doxorubicin, and etoposide in patients with HIV-associated non-Hodgkin's lymphoma. Med Oncol 1998;15:50-57. Available at: https://www.ncbi.nlm.nih.gov/pubmed/9643531.

89. Rudek MA, Flexner C, Ambinder RF. Use of antineoplastic agents in patients with cancer who have HIV/AIDS. Lancet Oncol 2011;12:905-912. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/21570912</u>.

90. Larson KB, Wang K, Delille C, et al. Pharmacokinetic enhancers in HIV therapeutics. Clin Pharmacokinet 2014;53:865-872. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25164142</u>.

91. Deeken JF, Beumer JH, Anders NM, et al. Preclinical assessment of the interactions between the antiretroviral drugs, ritonavir and efavirenz, and the tyrosine kinase inhibitor erlotinib. Cancer Chemother Pharmacol 2015;76:813-819. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/26330331.

92. Rudek MA, Chang CY, Steadman K, et al. Combination antiretroviral therapy (cART) component ritonavir significantly alters

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

docetaxel exposure. Cancer Chemother Pharmacol 2014;73:729-736. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24488374</u>.

93. Rudek MA, Moore PC, Mitsuyasu RT, et al. A phase 1/pharmacokinetic study of sunitinib in combination with highly active antiretroviral therapy in human immunodeficiency virus-positive patients with cancer: AIDS Malignancy Consortium trial AMC 061. Cancer 2014;120:1194-1202. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24474568.

94. Rubinstein PG, Braik T, Jain S, et al. Ritonavir based highly active retroviral therapy (HAART) correlates with early neurotoxicity when combined with ABVD treated HIV associated Hodgkin lymphoma but not non-Hodgkin lymphoma. A retrospective study [abstract]. Blood 2010;116:2807. Available at:

http://www.bloodjournal.org/content/116/21/2807.

95. Casado JL, Machuca I, Banon S, et al. Raltegravir plus two nucleoside analogues as combination antiretroviral therapy in HIV-infected patients who require cancer chemotherapy. Antivir Ther 2015;20:773-777. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25879675.

96. Torres HA, Rallapalli V, Saxena A, et al. Efficacy and safety of antiretrovirals in HIV-infected patients with cancer. Clin Microbiol Infect 2014;20:0672-679. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/24529214.

97. Moyle GJ, Sadler M. Peripheral neuropathy with nucleoside antiretrovirals: risk factors, incidence and management. Drug Saf 1998;19:481-494. Available at: https://www.ncbi.nlm.nih.gov/pubmed/9880091.

98. Bower M, McCall-Peat N, Ryan N, et al. Protease inhibitors potentiate chemotherapy-induced neutropenia. Blood 2004;104:2943-2946. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/15238428</u>.

99. Bower M, Powles T, Stebbing J, Thirlwell C. Potential antiretroviral drug interactions with cyclophosphamide, doxorubicin, and etoposide. J Clin Oncol 2005;23:1328-1329; author reply 1329-1330. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/15718342</u>.

100. Hughes CA, Robinson L, Tseng A, MacArthur RD. New antiretroviral drugs: a review of the efficacy, safety, pharmacokinetics, and resistance profile of tipranavir, darunavir, etravirine, rilpivirine, maraviroc, and raltegravir. Expert Opin Pharmacother 2009;10:2445-2466. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/19678794</u>.

101. Ly T, Ruiz ME. Prolonged QT interval and torsades de pointes associated with atazanavir therapy. Clin Infect Dis 2007;44:e67-68. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17304444</u>.

102. Behrens G, Dejam A, Schmidt H, et al. Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients under treatment with protease inhibitors. AIDS 1999;13:F63-70. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/10416516</u>.

103. Hoffman R, Welton ML, Klencke B, et al. The significance of pretreatment CD4 count on the outcome and treatment tolerance of HIV-positive patients with anal cancer. Int J Radiat Oncol Biol Phys 1999;44:127-131. Available at: https://www.ncbi.nlm.nih.gov/pubmed/10219805.

104. Holland JM, Swift PS. Tolerance of patients with human immunodeficiency virus and anal carcinoma to treatment with combined chemotherapy and radiation therapy. Radiology 1994;193:251-254. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/8090901</u>.

105. Kim JH, Sarani B, Orkin BA, et al. HIV-positive patients with anal carcinoma have poorer treatment tolerance and outcome than HIV-negative patients. Dis Colon Rectum 2001;44:1496-1502. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/11598480</u>.

106. Alongi F, Giaj-Levra N, Sciascia S, et al. Radiotherapy in patients with HIV: current issues and review of the literature. Lancet Oncol

NCCN Network®

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

2017;18:e379-e393. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28677574.

107. Chiao EY, Giordano TP, Richardson P, El-Serag HB. Human immunodeficiency virus-associated squamous cell cancer of the anus: epidemiology and outcomes in the highly active antiretroviral therapy era. J Clin Oncol 2008;26:474-479. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18202423.

108. Seo Y, Kinsella MT, Reynolds HL, et al. Outcomes of chemoradiotherapy with 5-Fluorouracil and mitomycin C for anal cancer in immunocompetent versus immunodeficient patients. Int J Radiat Oncol Biol Phys 2009;75:143-149. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/19203845</u>.

109. Lord RV. Anorectal surgery in patients infected with human immunodeficiency virus: factors associated with delayed wound healing. Ann Surg 1997;226:92-99. Available at: https://www.ncbi.nlm.nih.gov/pubmed/9242343.

110. Burke EC, Orloff SL, Freise CE, et al. Wound healing after anorectal surgery in human immunodeficiency virus-infected patients. Arch Surg 1991;126:1267-1270; discussion 1270-1261. Available at: https://www.ncbi.nlm.nih.gov/pubmed/1929828.

111. Buehrer JL, Weber DJ, Meyer AA, et al. Wound infection rates after invasive procedures in HIV-1 seropositive versus HIV-1 seronegative hemophiliacs. Ann Surg 1990;211:492-498. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/2322041</u>.

112. Horberg MA, Hurley LB, Klein DB, et al. Surgical outcomes in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Arch Surg 2006;141:1238-1245. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17178967</u>.

113. Alfa-Wali M, Dalla Pria A, Nelson M, et al. Surgical excision alone for stage T1 anal verge cancers in people living with HIV. Eur J Surg

Oncol 2016;42:813-816. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27012999.

114. Leeds IL, Alturki H, Canner JK, et al. Outcomes of abdominoperineal resection for management of anal cancer in HIVpositive patients: a national case review. World J Surg Oncol 2016;14:208. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27495294.

115. Lefevre JH, Corte H, Tiret E, et al. Abdominoperineal resection for squamous cell anal carcinoma: survival and risk factors for recurrence. Ann Surg Oncol 2012;19:4186-4192. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22825769.

116. Izadmehr S, Leapman M, Hobbs AR, et al. Clinical characteristics and outcomes of HIV-seropositive men treated with surgery for prostate cancer. Int Urol Nephrol 2016;48:1639-1645. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27318820.

117. Silberstein JL, Parsons JK, Palazzi-Churas K, et al. Robot-assisted laparoscopic radical prostatectomy in men with human immunodeficiency virus. Prostate Cancer Prostatic Dis 2010;13:328-332. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/20877308</u>.

118. Sigel C, Cavalcanti MS, Daniel T, et al. Clinicopathologic features of colorectal carcinoma in HIV-positive patients. Cancer Epidemiol Biomarkers Prev 2016;25:1098-1104. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27197294.

119. Di Benedetto F, Tarantino G, Ercolani G, et al. Multicenter Italian experience in liver transplantation for hepatocellular carcinoma in HIV-infected patients. Oncologist 2013;18:592-599. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23666950</u>.

120. Bizer LS, Pettorino R, Ashikari A. Emergency abdominal operations in the patient with acquired immunodeficiency syndrome. J Am Coll Surg 1995;180:205-209. Available at: https://www.ncbi.nlm.nih.gov/pubmed/7850056.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

121. Cacala SR, Mafana E, Thomson SR, Smith A. Prevalence of HIV status and CD4 counts in a surgical cohort: their relationship to clinical outcome. Ann R Coll Surg Engl 2006;88:46-51. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/16460640</u>.

122. Harris HW, Schecter WP. Surgical risk assessment and management in patients with HIV disease. Gastroenterol Clin North Am 1997;26:377-391. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/9187930.

123. Madiba TE, Muckart DJ, Thomson SR. Human immunodeficiency disease: how should it affect surgical decision making? World J Surg 2009;33:899-909. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/19280251.

124. Yii MK, Saunder A, Scott DF. Abdominal surgery in HIV/AIDS patients: indications, operative management, pathology and outcome. Aust N Z J Surg 1995;65:320-326. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/7741674</u>.

125. Fausto JA, Jr., Selwyn PA. Palliative care in the management of advanced HIV/AIDS. Prim Care 2011;38:311-326, ix. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/21628041</u>.

126. Lee JY, Dhakal I, Casper C, et al. Risk of cancer among commercially insured HIV-infected adults on antiretroviral therapy. J Cancer Epidemiol 2016;2016:2138259. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27882054</u>.

127. Shiels MS, Pfeiffer RM, Hall HI, et al. Proportions of Kaposi sarcoma, selected non-Hodgkin lymphomas, and cervical cancer in the United States occurring in persons with AIDS, 1980-2007. JAMA 2011;305:1450-1459. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21486978.

128. Trepka MJ, Auf R, Fennie KP, et al. Deaths due to screenable cancers among people living with HIV infection, Florida, 2000-2014. Am

J Prev Med 2017;53:705-709. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28751055.

129. Levine AM, Seaberg EC, Hessol NA, et al. HIV as a risk factor for lung cancer in women: data from the Women's Interagency HIV Study. J Clin Oncol 2010;28:1514-1519. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/20177022</u>.

130. Kirk GD, Merlo C, P OD, et al. HIV infection is associated with an increased risk for lung cancer, independent of smoking. Clin Infect Dis 2007;45:103-110. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17554710.

131. Sigel K, Wisnivesky J, Crothers K, et al. Immunological and infectious risk factors for lung cancer in US veterans with HIV: a longitudinal cohort study. Lancet HIV 2017;4:e67-e73. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27916584</u>.

132. Reddy KP, Kong CY, Hyle EP, et al. Lung cancer mortality associated with smoking and smoking cessation among people living with HIV in the United States. JAMA Intern Med 2017;177:1613-1621. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28975270</u>.

133. National Lung Screening Trial Research T, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/21714641</u>.

134. National Lung Screening Trial Research T, Church TR, Black WC, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 2013;368:1980-1991. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23697514</u>.

135. Hulbert A, Hooker CM, Keruly JC, et al. Prospective CT screening for lung cancer in a high-risk population: HIV-positive smokers. J Thorac Oncol 2014;9:752-759. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24828660.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

136. Makinson A, Eymard-Duvernay S, Raffi F, et al. Feasibility and efficacy of early lung cancer diagnosis with chest computed tomography in HIV-infected smokers. AIDS 2016;30:573-582. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/26829006</u>.

137. Ronit A, Kristensen T, Klitbo DM, et al. Incidental lung cancers and positive computed tomography images in people living with HIV. AIDS 2017;31:1973-1977. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28857778.

138. Powles T, Thirwell C, Newsom-Davis T, et al. Does HIV adversely influence the outcome in advanced non-small-cell lung cancer in the era of HAART? Br J Cancer 2003;89:457-459. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12888811.

139. Lee JY, Moore PC, Lensing SY. Impact of HIV infection on Medicare beneficiaries with lung cancer. J Cancer Epidemiol 2012;2012:706469. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22548059.

140. Lee JY, Moore PC, Steliga MA. Do HIV-infected non-small cell lung cancer patients receive guidance-concordant care? Med Care 2013;51:1063-1068. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24220684.

141. Suneja G, Shiels MS, Melville SK, et al. Disparities in the treatment and outcomes of lung cancer among HIV-infected individuals. AIDS 2013;27:459-468. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23079809</u>.

142. Hooker CM, Meguid RA, Hulbert A, et al. Human immunodeficiency virus infection as a prognostic factor in surgical patients with non-small cell lung cancer. Ann Thorac Surg 2012;93:405-412. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/22269705</u>.

143. Palefsky JM, Holly EA, Ralston ML, Jay N. Prevalence and risk factors for human papillomavirus infection of the anal canal in human immunodeficiency virus (HIV)-positive and HIV-negative homosexual

men. J Infect Dis 1998;177:361-367. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9466522.

144. Colon-Lopez V, Shiels MS, Machin M, et al. Anal cancer risk among people with HIV infection in the United States. J Clin Oncol 2017:JCO2017749291. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29140774.

145. Piketty C, Selinger-Leneman H, Bouvier AM, et al. Incidence of HIV-related anal cancer remains increased despite long-term combined antiretroviral treatment: results from the french hospital database on HIV. J Clin Oncol 2012;30:4360-4366. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23091098.

146. Duncan KC, Chan KJ, Chiu CG, et al. HAART slows progression to anal cancer in HIV-infected MSM. AIDS 2015;29:305-311. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/25686679</u>.

147. Libois A, Feoli F, Nkuize M, et al. Prolonged antiretroviral therapy is associated with fewer anal high-grade squamous intraepithelial lesions in HIV-positive MSM in a cross-sectional study. Sex Transm Infect 2017;93:15-17. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27030607.

148. Gaisa M, Sigel K, Hand J, Goldstone S. High rates of anal dysplasia in HIV-infected men who have sex with men, women, and heterosexual men. AIDS 2014;28:215-222. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24072194</u>.

149. Berry JM, Jay N, Cranston RD, et al. Progression of anal highgrade squamous intraepithelial lesions to invasive anal cancer among HIV-infected men who have sex with men. Int J Cancer 2014;134:1147-1155. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/23934991</u>.

150. Scholefield JH, Castle MT, Watson NF. Malignant transformation of high-grade anal intraepithelial neoplasia. Br J Surg 2005;92:1133-1136. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/16044425</u>.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

151. Tinmouth J, Peeva V, Amare H, et al. Progression from perianal high-grade anal intraepithelial neoplasia to anal cancer in HIV-positive men who have sex with men. Dis Colon Rectum 2016;59:836-842. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27505112</u>.

152. Watson AJ, Smith BB, Whitehead MR, et al. Malignant progression of anal intra-epithelial neoplasia. ANZ J Surg 2006;76:715-717. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/16916390</u>.

153. Gautier M, Brochard C, Lion A, et al. High-grade anal intraepithelial neoplasia: progression to invasive cancer is not a certainty. Dig Liver Dis 2016;48:806-811. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/27103359.

154. Goldstone SE, Johnstone AA, Moshier EL. Long-term outcome of ablation of anal high-grade squamous intraepithelial lesions: recurrence and incidence of cancer. Dis Colon Rectum 2014;57:316-323. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24509453</u>.

155. Barroso LF. Anal cancer screening. Lancet Oncol 2012;13:e278-279; author reply e280. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/22748260</u>.

156. Palefsky J, Berry JM, Jay N. Anal cancer screening. Lancet Oncol 2012;13:e279-280; author rreply e280. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/22748261</u>.

157. Park IU, Palefsky JM. Evaluation and management of anal intraepithelial neoplasia in HIV-negative and HIV-positive men who have sex with men. Curr Infect Dis Rep 2010;12:126-133. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/20461117</u>.

158. Roark R. The need for anal dysplasia screening and treatment programs for HIV-infected men who have sex with men: a review of the literature. J Assoc Nurses AIDS Care 2011;22:433-443. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22035523.

159. Scholefield JH, Harris D, Radcliffe A. Guidelines for management of anal intraepithelial neoplasia. Colorectal Dis 2011;13 Suppl 1:3-10. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/21251167</u>.

160. Wentzensen N. Screening for anal cancer: endpoints needed. Lancet Oncol 2012;13:438-440. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/22445258</u>.

161. Xu J, Zhou H. Screening for anal cancer in HIV positive patients: Should we make it a standard-of-care? J Invest Surg 2017:1-2. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28952827</u>.

162. Alam NN, White DA, Narang SK, et al. Systematic review of guidelines for the assessment and management of high-grade anal intraepithelial neoplasia (AIN II/III). Colorectal Dis 2016;18:135-146. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/26559167</u>.

163. Hartschuh W, Breitkopf C, Lenhard B, et al. S1 guideline: anal intraepithelial neoplasia (AIN) and perianal intraepithelial neoplasia (PAIN). J Dtsch Dermatol Ges 2011;9:256-258. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21208377.

164. Steele SR, Varma MG, Melton GB, et al. Practice parameters for anal squamous neoplasms. Dis Colon Rectum 2012;55:735-749. Available at: <u>http://www.ncbi.nlm.nih.gov/pubmed/22706125</u>.

165. Johnstone AA, Silvera R, Goldstone SE. Targeted ablation of perianal high-grade dysplasia in men who have sex with men: an alternative to mapping and wide local excision. Dis Colon Rectum 2015;58:45-52. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25489693.

166. Smulian AG, Moore DM, Robertson JC, Kralovic SM. Phase I study demonstrates safety and tolerability of radiofrequency ablation (RFA) of the anal mucosa. HIV Clin Trials 2014;15:36-44. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24525427.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

167. Willems N, Libois A, Nkuize M, et al. Treatment of anal dysplasia in HIV-positive men who have sex with men in a large AIDS reference centre. Acta Clin Belg 2017;72:29-35. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27320416</u>.

168. Richel O, de Vries HJ, van Noesel CJ, et al. Comparison of imiquimod, topical fluorouracil, and electrocautery for the treatment of anal intraepithelial neoplasia in HIV-positive men who have sex with men: an open-label, randomised controlled trial. Lancet Oncol 2013;14:346-353. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/23499546.

169. Bryant AK, Mudgway R, Huynh-Le M-P, et al. Effect of CD4 count on treatment toxicity and tumor recurrence in HIV positive patients with anal cancer. Intl J Rad Onc Biol Phys 2017;Epub ahead of print. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/29102276</u>.

170. Bryant AK, Huynh-Le MP, Simpson DR, et al. Association of HIV status with outcomes of anal squamous cell carcinoma in the era of highly active antiretroviral therapy. JAMA Oncol 2017. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28975226</u>.

171. Grew D, Bitterman D, Leichman CG, et al. HIV infection is associated with poor outcomes for patients with anal cancer in the highly active antiretroviral therapy era. Dis Colon Rectum 2015;58:1130-1136. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/26544809.

172. Oehler-Janne C, Huguet F, Provencher S, et al. HIV-specific differences in outcome of squamous cell carcinoma of the anal canal: a multicentric cohort study of HIV-positive patients receiving highly active antiretroviral therapy. J Clin Oncol 2008;26:2550-2557. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18427149.

173. White EC, Khodayari B, Erickson KT, et al. Comparison of toxicity and treatment outcomes in HIV-positive versus HIV-negative patients with squamous cell carcinoma of the anal canal. Am J Clin Oncol

2014;40:386-392. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25513996.

174. Martin D, Balermpas P, Fokas E, et al. Are there HIV-specific differences for anal cancer patients treated with standard chemoradiotherapy in the era of combined antiretroviral therapy? Clin Oncol (R Coll Radiol) 2017;29:248-255. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28049602.

175. Pappou EP, Magruder JT, Fu T, et al. Prognostic and predictive clinicopathologic factors of squamous anal canal cancer in HIV-positive and HIV-negative patients: does HAART influence outcomes? World J Surg 2017. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/28948325.

176. Oliveira SC, Moniz CM, Riechelmann R, et al. Phase II study of capecitabine in substitution of 5-FU in the chemoradiotherapy regimen for patients with localized squamous cell carcinoma of the anal canal. J Gastrointest Cancer 2016;47:75-81. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26691173.

177. Morris VK, Salem ME, Nimeiri H, et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol 2017;18:446-453. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28223062</u>.

178. Garg M, Lee JY, Kachnic LA, et al. Phase II trials of cetuximab (CX) plus cisplatin (CDDP), 5-fluorouracil (5-FU) and radiation (RT) in immunocompetent (ECOG 3205) and HIV-positive (AMC045) patients with squamous cell carcinoma of the anal canal (SCAC): Safety and preliminary efficacy results [abstract]. ASCO Meeting Abstracts 2012;30:4030. Available at:

http://meetinglibrary.asco.org/content/95820-114.

179. Garg MK, Zhao F, Sparano JA, et al. Cetuximab plus chemoradiotherapy in immunocompetent patients with anal carcinoma: a phase II Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group trial (E3205). J

NCCN Network®

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

Clin Oncol 2017;35:718-726. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28068178.

180. Sparano JA, Lee JY, Palefsky J, et al. Cetuximab plus chemoradiotherapy for HIV-associated anal carcinoma: a phase II AIDS Malignancy Consortium trial. J Clin Oncol 2017;35:727-733. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27937092</u>.

181. Biggar RJ, Jaffe ES, Goedert JJ, et al. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 2006;108:3786-3791. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/16917006</u>.

182. Kowalkowski MA, Mims MP, Amiran ES, et al. Effect of immune reconstitution on the incidence of HIV-related Hodgkin lymphoma. PLoS One 2013;8:e77409. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24098586.

183. Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma 2009;9:206-216. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19525189.

184. Ruiz M, Parsons C, Cole J. Characterization of HIV-associated Hodgkin's lymphoma in HIV-infected patients: a single-center experience. J Int Assoc Physicians AIDS Care (Chic) 2012;11:234-238. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/22302202</u>.

185. Sorigue M, Garcia O, Tapia G, et al. HIV-infection has no prognostic impact on advanced-stage Hodgkin lymphoma. AIDS 2017;31:1445-1449. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/28574963</u>.

186. Diez-Martin JL, Balsalobre P, Re A, et al. Comparable survival between HIV+ and HIV- non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. Blood 2009;113:6011-6014. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/19307667.

187. Xicoy B, Ribera JM, Miralles P, et al. Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin's lymphoma. Haematologica 2007;92:191-198. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17296568</u>.

188. Serraino D, Carbone A, Franceschi S, Tirelli U. Increased frequency of lymphocyte depletion and mixed cellularity subtypes of Hodgkin's disease in HIV-infected patients. Italian Cooperative Group on AIDS and Tumours. Eur J Cancer 1993;29A:1948-1950. Available at: https://www.ncbi.nlm.nih.gov/pubmed/8280487.

189. Tirelli U, Errante D, Dolcetti R, et al. Hodgkin's disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors. J Clin Oncol 1995;13:1758-1767. Available at: https://www.ncbi.nlm.nih.gov/pubmed/7541452.

190. Besson C, Lancar R, Prevot S, et al. High risk features contrast with favorable outcomes in HIV-associated Hodgkin lymphoma in the modern cART era, ANRS CO16 LYMPHOVIR cohort. Clin Infect Dis 2015;61:1469-1475. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26223997.

191. Shah BK, Subramaniam S, Peace D, Garcia C. HIV-associated primary bone marrow Hodgkin's lymphoma: a distinct entity? J Clin Oncol 2010;28:e459-460. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20679601.

192. O'Neill A, Mikesch K, Fritsch K, et al. Outcomes for HIV-positive patients with primary central nervous system lymphoma after high-dose chemotherapy and auto-SCT. Bone Marrow Transplant 2015;50:999-1000. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25867650</u>.

193. Glaser SL, Clarke CA, Gulley ML, et al. Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the Greater San Francisco Bay Area, 1988-1998. Cancer 2003;98:300-309. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/12872349</u>.

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

194. Montoto S, Shaw K, Okosun J, et al. HIV status does not influence outcome in patients with classical Hodgkin lymphoma treated with chemotherapy using doxorubicin, bleomycin, vinblastine, and dacarbazine in the highly active antiretroviral therapy era. J Clin Oncol 2012;30:4111-4116. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23045581.

195. Shiels MS, Koritzinsky EH, Clarke CA, et al. Prevalence of HIV Infection among U.S. Hodgkin lymphoma cases. Cancer Epidemiol Biomarkers Prev 2014;23:274-281. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24326629</u>.

196. Hoffmann C, Chow KU, Wolf E, et al. Strong impact of highly active antiretroviral therapy on survival in patients with human immunodeficiency virus-associated Hodgkin's disease. Br J Haematol 2004;125:455-462. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15142115.

197. Olszewski AJ, Castillo JJ. Outcomes of HIV-associated Hodgkin lymphoma in the era of antiretroviral therapy. AIDS 2016;30:787-796. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/26730566</u>.

198. Han X, Jemal A, Hulland E, et al. HIV infection and survival of lymphoma patients in the era of highly active antiretroviral therapy. Cancer Epidemiol Biomarkers Prev 2017;26:303-311. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27756777</u>.

199. Spina M, Gabarre J, Rossi G, et al. Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection. Blood 2002;100:1984-1988. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/12200356</u>.

200. Hartmann P, Rehwald U, Salzberger B, et al. BEACOPP therapeutic regimen for patients with Hodgkin's disease and HIV infection. Ann Oncol 2003;14:1562-1569. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/14504059</u>.

201. Hentrich M, Berger M, Wyen C, et al. Stage-adapted treatment of HIV-associated Hodgkin lymphoma: results of a prospective multicenter study. J Clin Oncol 2012;30:4117-4123. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23045592</u>.

202. Ezzat HM, Cheung MC, Hicks LK, et al. Incidence, predictors and significance of severe toxicity in patients with human immunodeficiency virus-associated Hodgkin lymphoma. Leuk Lymphoma 2012;53:2390-2396. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/22642935</u>.

203. Spitzer TR, Ambinder RF, Lee JY, et al. Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS Malignancy Consortium study 020. Biol Blood Marrow Transplant 2008;14:59-66. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/18158962</u>.

204. Balsalobre P, Diez-Martin JL, Re A, et al. Autologous stem-cell transplantation in patients with HIV-related lymphoma. J Clin Oncol 2009;27:2192-2198. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19332732.

205. Alvarnas JC, Le Rademacher J, Wang Y, et al. Autologous hematopoietic cell transplantation for HIV-related lymphoma: results of the BMT CTN 0803/AMC 071 trial. Blood 2016;128:1050-1058. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/27297790</u>.

206. Okosun J, Warbey V, Shaw K, et al. Interim fluoro-2-deoxy-Dglucose-PET predicts response and progression-free survival in patients with Hodgkin lymphoma and HIV infection. AIDS 2012;26:861-865. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/22333746</u>.

207. Danilov AV, Li H, Press OW, et al. Feasibility of interim positron emission tomography (PET)-adapted therapy in HIV-positive patients with advanced Hodgkin lymphoma (HL): a sub-analysis of SWOG S0816 Phase 2 trial. Leuk Lymphoma 2017;58:461-465. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27386786.

NCCN National Comprehensive Cancer Network®

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

208. Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced hodgkin's lymphoma. N Engl J Med 2016;374:2419-2429. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27332902.

209. Andrieu JM, Roithmann S, Tourani JM, et al. Hodgkin's disease during HIV1 infection: the French registry experience. French Registry of HIV-associated Tumors. Ann Oncol 1993;4:635-641. Available at: https://www.ncbi.nlm.nih.gov/pubmed/8240994.

210. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999;189:12-19. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/10451482</u>.

211. Adebamowo SN, Olawande O, Famooto A, et al. Persistent lowrisk and high-risk human papillomavirus infections of the uterine cervix in HIV-negative and HIV-positive women. Front Public Health 2017;5:178. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/28785554

212. McDonald AC, Tergas AI, Kuhn L, et al. Distribution of human papillomavirus genotypes among HIV-positive and HIV-negative women in Cape Town, South Africa. Front Oncol 2014;4:48. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24672770.

213. Abraham AG, D'Souza G, Jing Y, et al. Invasive cervical cancer risk among HIV-infected women: a North American multicohort collaboration prospective study. J Acquir Immune Defic Syndr 2013;62:405-413. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/23254153.

214. Chen YC, Li CY, Liu HY, et al. Effect of antiretroviral therapy on the incidence of cervical neoplasia among HIV-infected women: a population-based cohort study in Taiwan. AIDS 2014;28:709-715. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/24326354</u>.

215. Adler DH, Kakinami L, Modisenyane T, et al. Increased regression and decreased incidence of human papillomavirus-related cervical lesions among HIV-infected women on HAART. AIDS 2012;26:1645-1652. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/22555167</u>.

216. Heard I, Potard V, Costagliola D. Limited impact of immunosuppression and HAART on the incidence of cervical squamous intraepithelial lesions in HIV-positive women. Antivir Ther 2006;11:1091-1096. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/17302379</u>.

217. Menon S, Rossi R, Zdraveska N, et al. Associations between highly active antiretroviral therapy and the presence of HPV, premalignant and malignant cervical lesions in sub-Saharan Africa, a systematic review: current evidence and directions for future research. BMJ Open 2017;7:e015123. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28780541.

218. Kelly H, Weiss HA, Benavente Y, et al. Association of antiretroviral therapy with high-risk human papillomavirus, cervical intraepithelial neoplasia, and invasive cervical cancer in women living with HIV: a systematic review and meta-analysis. Lancet HIV 2017. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29107561.

219. International Collaboration on HIV, Cancer. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst 2000;92:1823-1830. Available at: https://www.ncbi.nlm.nih.gov/pubmed/11078759.

220. Santesso N, Mustafa RA, Schunemann HJ, et al. World Health Organization Guidelines for treatment of cervical intraepithelial neoplasia 2-3 and screen-and-treat strategies to prevent cervical cancer. Int J Gynaecol Obstet 2016;132:252-258. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26868062.

221. Forhan SE, Godfrey CC, Watts DH, Langley CL. A systematic review of the effects of visual inspection with acetic acid, cryotherapy, and loop electrosurgical excision procedures for cervical dysplasia in

NCCN Guidelines Version 1.2018 Cancer in People Living With HIV

NCCN Guidelines Index Table of Contents Discussion

HIV-infected women in low- and middle-income countries. J Acquir Immune Defic Syndr 2015;68 Suppl 3:S350-356. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25768874</u>.

222. Hank E, Hoque ME, Zungu L. Cervical precancerous lesions and cancer among patients in the gynaecology outpatient department at a tertiary hospital in South Africa. Asian Pac J Cancer Prev 2013;14:4903-4906. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24083765.

223. Heard I, Potard V, Foulot H, et al. High rate of recurrence of cervical intraepithelial neoplasia after surgery in HIV-positive women. J Acquir Immune Defic Syndr 2005;39:412-418. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/16010162</u>.

224. Kreitchmann R, Bajotto H, da Silva DA, Fuchs SC. Squamous intraepithelial lesions in HIV-infected women: prevalence, incidence, progression and regression. Arch Gynecol Obstet 2013;288:1107-1113. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/23644923</u>.

225. McClung EC, Blumenthal PD. Efficacy, safety, acceptability and affordability of cryotherapy: a review of current literature. Minerva Ginecol 2012;64:149-171. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22481625.

226. Reimers LL, Sotardi S, Daniel D, et al. Outcomes after an excisional procedure for cervical intraepithelial neoplasia in HIV-infected women. Gynecol Oncol 2010;119:92-97. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/20605046</u>.

227. Foulot H, Heard I, Potard V, et al. Surgical management of cervical intraepithelial neoplasia in HIV-infected women. Eur J Obstet Gynecol Reprod Biol 2008;141:153-157. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/18760524</u>.

228. Bambury I, Mullings A, Fletcher H, et al. Cervical intraepithelial neoplasia in a cohort of HIV-positive women at the University Hospital of the West Indies: management and outcome. West Indian Med J

2013;62:313-317. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24756591.

229. Cejtin HE, Zimmerman L, Mathews M, Patel A. Predictors of persistent or recurrent disease after loop electrosurgical excision procedure. J Low Genit Tract Dis 2017;21:59-63. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27824789.

230. Smith JS, Sanusi B, Swarts A, et al. A randomized clinical trial comparing cervical dysplasia treatment with cryotherapy vs loop electrosurgical excision procedure in HIV-seropositive women from Johannesburg, South Africa. Am J Obstet Gynecol 2017;217:183 e181-183 e111. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/28366730.

231. Ntekim A, Campbell O, Rothenbacher D. Optimal management of cervical cancer in HIV-positive patients: a systematic review. Cancer Med 2015;4:1381-1393. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26136407.

232. Simonds HM, Neugut AI, Jacobson JS. HIV status and acute hematologic toxicity among patients with cervix cancer undergoing radical chemoradiation. Int J Gynecol Cancer 2015;25:884-890. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25853380</u>.

233. Uldrick TS, Ison G, Rudek MA, et al. Modernizing clinical trial eligibility criteria: Recommendations of the American Society of Clinical Oncology-Friends of Cancer Research HIV Working Group. J Clin Oncol 2017;35:3774-3780. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28968173.